一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

面向自動(dòng)協(xié)同駕駛的多車編隊(duì)任務(wù)分配策略

李長(zhǎng)樂 張?jiān)其h 張堯 毛國(guó)強(qiáng) 賈存興

李長(zhǎng)樂, 張?jiān)其h, 張堯, 毛國(guó)強(qiáng), 賈存興. 面向自動(dòng)協(xié)同駕駛的多車編隊(duì)任務(wù)分配策略[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 65-73. doi: 10.11999/JEIT190557
引用本文: 李長(zhǎng)樂, 張?jiān)其h, 張堯, 毛國(guó)強(qiáng), 賈存興. 面向自動(dòng)協(xié)同駕駛的多車編隊(duì)任務(wù)分配策略[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 65-73. doi: 10.11999/JEIT190557
Changle LI, Yunfeng ZHANG, Yao ZHANG, Guoqiang MAO, Cunxing JIA. Task Assignment Strategy for Platoons in Cooperative Driving[J]. Journal of Electronics & Information Technology, 2020, 42(1): 65-73. doi: 10.11999/JEIT190557
Citation: Changle LI, Yunfeng ZHANG, Yao ZHANG, Guoqiang MAO, Cunxing JIA. Task Assignment Strategy for Platoons in Cooperative Driving[J]. Journal of Electronics & Information Technology, 2020, 42(1): 65-73. doi: 10.11999/JEIT190557

面向自動(dòng)協(xié)同駕駛的多車編隊(duì)任務(wù)分配策略

doi: 10.11999/JEIT190557 cstr: 32379.14.JEIT190557
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(U1801266),陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018ZDXM-GY-038, 2018ZDCXL-GY-04-02),陜西高校青年創(chuàng)新團(tuán)隊(duì),西安市科技計(jì)劃項(xiàng)目(201809170CX11JC12)
詳細(xì)信息
    作者簡(jiǎn)介:

    李長(zhǎng)樂:男,1976年生,教授,博士生導(dǎo)師,研究方向?yàn)榫W(wǎng)聯(lián)網(wǎng)控?zé)o人駕駛、智能網(wǎng)聯(lián)汽車超視距感知、交通大數(shù)據(jù)分析及應(yīng)用、大規(guī)模網(wǎng)絡(luò)技術(shù)、高動(dòng)態(tài)網(wǎng)絡(luò)技術(shù)等

    張?jiān)其h:男,1996年生,碩士生,研究方向?yàn)檐囕v編隊(duì)、協(xié)同駕駛

    張堯:男,1993年生,博士生,研究方向?yàn)檐嚶?lián)網(wǎng)、邊緣計(jì)算、無線傳感器網(wǎng)絡(luò)

    毛國(guó)強(qiáng):男,1974年生,教授,博士生導(dǎo)師,研究方向?yàn)橹悄芙煌夹g(shù)、車聯(lián)網(wǎng)、智慧公路與智能網(wǎng)聯(lián)駕駛、下一代移動(dòng)通信系統(tǒng)(5G)關(guān)鍵技術(shù)研發(fā)、物聯(lián)網(wǎng)、無線定位技術(shù)等

    賈存興:男,高級(jí)工程師,研究方向?yàn)楣放c水路運(yùn)輸、建筑科學(xué)與工程

    通訊作者:

    李長(zhǎng)樂 clli@mail.xidian.edu.cn

  • 中圖分類號(hào): TN929.5

Task Assignment Strategy for Platoons in Cooperative Driving

Funds: The National Natural Science Foundation of China (U1801266), The Key Research and Development Program of Shaanxi (2018ZDXM-GY-038, 2018ZDCXL-GY-04-02), The Youth Innovation Team of Shaanxi Universities, The Science and Technology Projects of Xi’an (201809170CX11JC12)
  • 摘要: 自動(dòng)駕駛的實(shí)現(xiàn)需要大量車載傳感器的支持,然而,在有限車載計(jì)算資源條件下,由傳感器所產(chǎn)生的龐大數(shù)據(jù)量使得自動(dòng)駕駛?cè)蝿?wù)的實(shí)時(shí)性難以滿足,成為阻礙自動(dòng)駕駛技術(shù)進(jìn)一步發(fā)展的重要阻力。通過將駕駛?cè)蝿?wù)進(jìn)行協(xié)作處理,因而充分利用多個(gè)協(xié)作車輛的計(jì)算資源,自動(dòng)協(xié)同駕駛成為解決該問題的新途徑。而如何形成多車編隊(duì)并實(shí)現(xiàn)編隊(duì)中駕駛?cè)蝿?wù)分配則是實(shí)現(xiàn)自動(dòng)協(xié)同駕駛的關(guān)鍵。該文首先采用排隊(duì)理論G/G/1模型建立一種普適性車輛編隊(duì)網(wǎng)絡(luò)拓?fù)浞治瞿P停浞挚紤]編隊(duì)內(nèi)車輛間的任務(wù)協(xié)作能力和單個(gè)車輛的任務(wù)負(fù)荷,得出任務(wù)的處理時(shí)延和車輛系統(tǒng)中的平均任務(wù)數(shù);其次,采用支持向量機(jī)(SVM)方法,基于車輛的負(fù)荷程度及處理能力將車輛的“空閑”、“繁忙”兩狀態(tài)進(jìn)行分類,進(jìn)而建立針對(duì)車輛協(xié)作任務(wù)分配的候選車輛集。最后,基于上述分析,該文提出面向多車編隊(duì)協(xié)同駕駛的任務(wù)均衡策略——基于分類的貪婪均衡策略(C-GBS),以充分平衡編隊(duì)內(nèi)所有車輛的任務(wù)負(fù)荷并利用不同車輛的任務(wù)處理能力。仿真結(jié)果表明,該策略能夠減小重負(fù)荷網(wǎng)絡(luò)中的任務(wù)處理時(shí)延,有效提升自動(dòng)駕駛車輛的任務(wù)處理效率。
  • 圖  1  自動(dòng)協(xié)同駕駛的多車編隊(duì)場(chǎng)景示意圖

    圖  2  車輛編隊(duì)網(wǎng)絡(luò)拓?fù)浣?/p>

    圖  3  不同分配策略的任務(wù)總時(shí)延

    圖  4  不同分配策略的處理時(shí)延比值關(guān)系圖

    圖  5  不同分配策略的系統(tǒng)資源利用率

    表  1  C-GBS算法

     輸入:車輛集$V$,任務(wù)集T
     輸出:結(jié)果集S
     (1) 基于對(duì)車輛狀態(tài)的分類,初始化候選車輛集${V_1}$和結(jié)果集S
     (2) 遍歷任務(wù)集T,選取T 中時(shí)延門限${T_i}$最小的任務(wù)${t_i}$,對(duì)其進(jìn)行
       分配;
     (3) 選擇候選車輛集${V_1}$中的第1輛車${v_{k,1}}$,根據(jù)${v_{k,1}}$的處理速率和
       任務(wù)${t_i}$的sizei估計(jì)${v_{k,1}}$處理任務(wù)${t_i}$所需的時(shí)間${\tau _{i,1}}$,并令
       $ {\tau _i} = {\tau _{i,1}},\kappa = 1$;
     (4) 遍歷候選車輛集${V_1}$,依次計(jì)算${V_1}$中每輛車vk處理任務(wù)${t_i}$所需
       時(shí)間${\tau _{i,k}}$,若${\tau _{i,k}}<{\tau _{i}}$,則令$ {\tau _i} = {\tau _{i,k}},\kappa = k$;
     (5) 遍歷${V_1}$完成后,將任務(wù)${t_i}$分配給${V_1}$中的第$ \kappa $輛車處理;
     (6) 更新車輛vk的狀態(tài),更新候選車輛集${V_1}$,更新任務(wù)集T并更
       新結(jié)果集S記錄每項(xiàng)任務(wù)的處理情況;
     (7) 返回第(2)步,繼續(xù)執(zhí)行,直到任務(wù)全部完成。
    下載: 導(dǎo)出CSV
  • CESARI G, SCHILDBACH G, CARVALHO A, et al. Scenario model predictive control for lane change assistance and autonomous driving on highways[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 23–35. doi: 10.1109/MITS.2017.2709782
    CHANG L and DORMEHL L. 6 self-driving car crashes that tapped the brakes on the autonomous revolution[EB/OL]. https://www.digitaltrends.com/cool-tech/most-significant-self-driving-car-crashes/, 2018.
    SU Zhou, HUI Yilong, XU Qichao, et al. An edge caching scheme to distribute content in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5346–5356. doi: 10.1109/TVT.2018.2824345
    AISSIOUI A, KSENTINI A, GUEROUI A M, et al. On enabling 5G automotive systems using follow me edge-cloud concept[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5302–5316. doi: 10.1109/TVT.2018.2805369
    TRAN T X, HAJISAMI A, PANDEY P, et al. Collaborative mobile edge computing in 5G networks: New paradigms, scenarios, and challenges[J]. IEEE Communications Magazine, 2017, 55(4): 54–61. doi: 10.1109/MCOM.2017.1600863
    LUAN T H, CAI L X, CHEN Jiming, et al. Engineering a distributed infrastructure for large-scale cost-effective content dissemination over urban vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(3): 1419–1435. doi: 10.1109/TVT.2013.2251924
    SU Zhou, HUI Yilong, and GUO Song. D2D-based content delivery with parked vehicles in vehicular social networks[J]. IEEE Wireless Communications, 2016, 23(4): 90–95. doi: 10.1109/MWC.2016.7553031
    LI S E, GAO Feng, LI Keqiang, et al. Robust longitudinal control of multi-vehicle systems-a distributed h-infinity method[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2779–2788. doi: 10.1109/TITS.2017.2760910
    JAIN A, GHOSE D, and MENON P P. Multi-vehicle formation in a controllable force field with non-identical controller gains[J]. IET Control Theory & Applications, 2018, 12(6): 802–811.
    LI Xin and ZHU Daqi. An adaptive SOM neural network method for distributed formation control of a group of AUVs[J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8260–8270.
    LIU Yuanchang and BUCKNALL R. A survey of formation control and motion planning of multiple unmanned vehicles[J]. Robotica, 2018, 36(7): 1019–1047. doi: 10.1017/S0263574718000218
    ZHU Daqi, CAO Xiang, SUN Bing, et al. Biologically inspired self-organizing map applied to task assignment and path planning of an AUV system[J]. IEEE Transactions on Cognitive and Developmental Systems, 2018, 10(2): 304–313. doi: 10.1109/TCDS.2017.2727678
    GODFREY G A and POWELL W B. An adaptive dynamic programming algorithm for dynamic fleet management, II: Multiperiod travel times[J]. Transportation Science, 2002, 36(1): 40–54. doi: 10.1287/trsc.36.1.40.572
    VIEGAS D, BATISTA P, OLIVEIRA P, et al. Discrete-time distributed Kalman filter design for formations of autonomous vehicles[J]. Control Engineering Practice, 2018, 75: 55–68. doi: 10.1016/j.conengprac.2018.03.014
    The 5G Infrastructure Public Private Partnership (5G PPP). 5G PPP white paper on automotive vertical sectors[EB/OL]. https://5g-ppp.eu/wp-content/uploads/2014/02/5G-PPP-White-Paper-on-Automotive-Vertical-Sectors.pdf, 2015.
    PENG Haixia, LI Dazhou, ABBOUD K, et al. Performance analysis of IEEE 802.11p DCF for multiplatooning communications with autonomous vehicles[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2485–2498. doi: 10.1109/TVT.2016.2571696
    3GPP. Study on LTE-based V2X services[EB/OL]. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2934.
    PIRO G, ORSINO A, CAMPOLO C, et al. D2D in LTE vehicular networking: System model and upper bound performance[C]. The 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops, Brno, Czech Republic, 2015: 281–286.
    WHITT W. The queueing network analyzer[J]. The Bell System Technical Journal, 1983, 62(9): 2779–2815. doi: 10.1002/j.1538-7305.1983.tb03204.x
    DAVIS J L, MASSEY W A, and WHITT W. Sensitivity to the service-time distribution in the nonstationary erlang loss model[J]. Management Science, 1995, 41(6): 1107–1116. doi: 10.1287/mnsc.41.6.1107
    LI Changle, ZHANG Yao, LUAN T H, et al. Building transmission backbone for highway vehicular networks: Framework and analysis[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8709–8722. doi: 10.1109/TVT.2018.2844471
    WHITT W. Approximating a point process by a renewal process, I: Two basic methods[J]. Operations Research, 1982, 30(1): 125–147. doi: 10.1287/opre.30.1.125
    RAY W D. Basic queueing theory[J]. Journal of the Royal Statistical Society: Series A, 1988, 151(3): 550–684.
    AVIDAN S. Support vector tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(8): 1064–1072. doi: 10.1109/TPAMI.2004.53
    MOLINA-MASEGOSA R and GOZALVEZ J. LTE-V for sidelink 5G V2X vehicular communications: A new 5G technology for short-range vehicle-to-everything communications[J]. IEEE Vehicular Technology Magazine, 2017, 12(4): 30–39. doi: 10.1109/MVT.2017.2752798
  • 加載中
圖(5) / 表(1)
計(jì)量
  • 文章訪問數(shù):  3240
  • HTML全文瀏覽量:  1556
  • PDF下載量:  187
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-11-28
  • 網(wǎng)絡(luò)出版日期:  2019-11-29
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回