復(fù)雜多徑信號下基于空域變換的米波雷達(dá)穩(wěn)健測高算法
doi: 10.11999/JEIT190554 cstr: 32379.14.JEIT190554
-
1.
南昌工程學(xué)院信息工程學(xué)院 南昌 310099
-
2.
西安電子科技大學(xué)雷達(dá)信號處理國家重點實驗室 西安 710071
Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar
-
1.
School of Information Engineering, Nanchang Institute of Technology, Nanchang 310099, China
-
2.
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
摘要:
針對米波(VHF)雷達(dá)的復(fù)雜多徑信號中散射分量的非高斯性嚴(yán)重影響測高的穩(wěn)定性,該文提出了穩(wěn)健的空域符號變換最大似然測高算法。該算法先對多維陣列快拍矢量進(jìn)行空域符號變換處理,以抑制散射分量野值點對陣列協(xié)方差矩陣及其測高算法的影響,再計算符號協(xié)方差矩陣(SCM),然后根據(jù)符號協(xié)方差矩陣的映射等效性和特征空間不變性,將符號協(xié)方差矩陣應(yīng)用到最大似然(SCM-ML)測高算法中,實現(xiàn)了穩(wěn)健的米波雷達(dá)低角測高。該算法有效抑制了多徑信號中散射分量和波束打地形成的強雜波的非高斯性,提高了米波雷達(dá)低角測高的穩(wěn)健性。仿真結(jié)果和實測數(shù)據(jù)驗證了算法的穩(wěn)健性與有效性。
Abstract:A robust spatial sign transform-based maximum likelihood method for low-elevation target altitude measurement is proposed in the presence of the non-Gaussian diffuse multipath component for Very High Frequency (VHF) radar. The spatial sign transform is implemented to the antenna array snapshots, reducing the influence of the outliers on array covariance matrix and the low elevation estimation algorithms, followed by computing the spatial Sign Covariance Matrix(SCM). Then the application of SCM to the Maximum Likelihood method(SCM-ML) is presented on the basis of the affine equivalence and preservation of the eigenstructure for robust low elevation estimation and height finding of VHF radar. The proposed method effectively solves the non-Gaussian property of the diffuse multipath component and improves the robustness of low elevation estimation. Simulation result and real data demonstrate the robustness and validation of the SCM-ML method.
-
BALAJTI I, KENDE G, and SINNER E. Increased importance of VHF radars in ground-based air defense[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(1): 4–18. doi: 10.1109/MAES.2012.6145436 鄭軼松, 陳伯孝. 米波雷達(dá)低仰角目標(biāo)多徑模型及其反演方法研究[J]. 電子與信息學(xué)報, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013 LI Cunxu, CHEN Baixiao, ZHENG Yisong, et al. Altitude measurement of low elevation target in complex terrain based on orthogonal matching pursuit[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 745–751. doi: 10.1049/iet-rsn.2016.0468 BARTON D K. Radar Equations for Modern Radar[M]. Boston: Artech House, 2012: 80–82. EZUMA M, OZDEMIR O, ANJINAPPA C K, et al. Micro-UAV detection with a low-grazing angle Millimeter wave radar[C]. 2019 IEEE Radio and Wireless Symposium, Orlando, USA, 2019: 1–4. doi: 10.1109/RWS.2019.8714203. RAYMAEKERS J and ROUSSEEUW P. A generalized spatial sign covariance matrix[J]. Journal of Multivariate Analysis, 2019, 171: 94–111. doi: 10.1016/j.jmva.2018.11.010 HAYKIN S. Adaptive Radar Signal Processing[M]. Hoboken: Wiley & Sons, 2006: 1–60. BILLINGSLEY J B. Low-angle Radar Land Clutter: Measurements and Empirical Models[M]. Norwich, NY: William Andrew Publishing, 2002: 300–350. SHAGHAGHI M and VOROBYOV S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3251–3265. doi: 10.1109/TSP.2015.2422675 AUGUIN N, MORALES-JIMENEZ D, MCKAY M R, et al. Large-dimensional behavior of regularized Maronna’s M-estimators of covariance matrices[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3259–3272. doi: 10.1109/TSP.2018.2831629 LIU T H and MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605–1613. doi: 10.1109/78.934131 VISURI S, OJA H, and KOIVUNEN V. Subspace-based direction-of-arrival estimation using nonparametric statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(9): 2060–2073. doi: 10.1109/78.942634 KOZICK R J and SADLER B M. Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures[J]. IEEE Transactions on Signal Processing, 2000, 48(12): 3520–3525. doi: 10.1109/78.887045 HAMPEL F R, RONCHETTI E M, ROUSSEEUW P J, et al. Robust Statistics: The Approach Based on Influence Functions[M]. New York, USA: John Wiley & Sons Inc., 1986: 275–276. BAKTASH E, KARIMI M, and WANG Xiaodong. Maximum-likelihood direction finding under elliptical noise using the EM algorithm[J]. IEEE Communications Letters, 2019, 23(6): 1041–1044. doi: 10.1109/LCOMM.2019.2911518 PAN Yan, DUAN Fabing, CHAPEAU-BLONDEAU F, et al. Noise enhancement in robust estimation of location[J]. IEEE Transactions on Signal Processing, 2018, 66(8): 1953–1966. doi: 10.1109/TSP.2018.2802463 -