一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

復(fù)雜多徑信號下基于空域變換的米波雷達(dá)穩(wěn)健測高算法

陳根華 陳伯孝

陳根華, 陳伯孝. 復(fù)雜多徑信號下基于空域變換的米波雷達(dá)穩(wěn)健測高算法[J]. 電子與信息學(xué)報, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554
引用本文: 陳根華, 陳伯孝. 復(fù)雜多徑信號下基于空域變換的米波雷達(dá)穩(wěn)健測高算法[J]. 電子與信息學(xué)報, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554
Genhua CHEN, Baixiao CHEN. Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554
Citation: Genhua CHEN, Baixiao CHEN. Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1297-1302. doi: 10.11999/JEIT190554

復(fù)雜多徑信號下基于空域變換的米波雷達(dá)穩(wěn)健測高算法

doi: 10.11999/JEIT190554 cstr: 32379.14.JEIT190554
基金項目: 國家自然科學(xué)基金(61401187),江西省教育廳科學(xué)技術(shù)研究項目(GJJ170990)
詳細(xì)信息
    作者簡介:

    陳根華:男,1980年生,副教授,博士,研究方向為陣列雷達(dá)信號處理

    陳伯孝:男,1966年生,教授,博士生導(dǎo)師,研究方向為新體制雷達(dá)系統(tǒng)設(shè)計及其實現(xiàn)、雷達(dá)信號處理、目標(biāo)精確制導(dǎo)與跟蹤等

    通訊作者:

    陳根華 cghnit@126.com

  • 中圖分類號: TN958

Robust Altitude Estimation Based on Spatial Sign Transform in the Presence of Diffuse Multipath for Very High Frequency Radar

Funds: The National Natural Science Foundation of China(61401187), The Science Research of Jiangxi Provincial Department of Education(GJJ170990)
  • 摘要:

    針對米波(VHF)雷達(dá)的復(fù)雜多徑信號中散射分量的非高斯性嚴(yán)重影響測高的穩(wěn)定性,該文提出了穩(wěn)健的空域符號變換最大似然測高算法。該算法先對多維陣列快拍矢量進(jìn)行空域符號變換處理,以抑制散射分量野值點對陣列協(xié)方差矩陣及其測高算法的影響,再計算符號協(xié)方差矩陣(SCM),然后根據(jù)符號協(xié)方差矩陣的映射等效性和特征空間不變性,將符號協(xié)方差矩陣應(yīng)用到最大似然(SCM-ML)測高算法中,實現(xiàn)了穩(wěn)健的米波雷達(dá)低角測高。該算法有效抑制了多徑信號中散射分量和波束打地形成的強雜波的非高斯性,提高了米波雷達(dá)低角測高的穩(wěn)健性。仿真結(jié)果和實測數(shù)據(jù)驗證了算法的穩(wěn)健性與有效性。

  • 圖  1  復(fù)雜環(huán)境下米波雷達(dá)低角目標(biāo)測高示意圖

    圖  2  空域符號變換示意圖

    圖  3  某相控陣米波雷達(dá)低角目標(biāo)回波序列

    圖  4  符號變換后SCM特征值分布

    圖  5  SCM-ML測高算法精度

    圖  6  SCM-ML測高算法低角估計分布

    圖  7  SCM-ML穩(wěn)健性能分析及測高算法分辨性能

  • BALAJTI I, KENDE G, and SINNER E. Increased importance of VHF radars in ground-based air defense[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(1): 4–18. doi: 10.1109/MAES.2012.6145436
    鄭軼松, 陳伯孝. 米波雷達(dá)低仰角目標(biāo)多徑模型及其反演方法研究[J]. 電子與信息學(xué)報, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013

    ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013
    LI Cunxu, CHEN Baixiao, ZHENG Yisong, et al. Altitude measurement of low elevation target in complex terrain based on orthogonal matching pursuit[J]. IET Radar, Sonar & Navigation, 2017, 11(5): 745–751. doi: 10.1049/iet-rsn.2016.0468
    BARTON D K. Radar Equations for Modern Radar[M]. Boston: Artech House, 2012: 80–82.
    EZUMA M, OZDEMIR O, ANJINAPPA C K, et al. Micro-UAV detection with a low-grazing angle Millimeter wave radar[C]. 2019 IEEE Radio and Wireless Symposium, Orlando, USA, 2019: 1–4. doi: 10.1109/RWS.2019.8714203.
    RAYMAEKERS J and ROUSSEEUW P. A generalized spatial sign covariance matrix[J]. Journal of Multivariate Analysis, 2019, 171: 94–111. doi: 10.1016/j.jmva.2018.11.010
    HAYKIN S. Adaptive Radar Signal Processing[M]. Hoboken: Wiley & Sons, 2006: 1–60.
    BILLINGSLEY J B. Low-angle Radar Land Clutter: Measurements and Empirical Models[M]. Norwich, NY: William Andrew Publishing, 2002: 300–350.
    SHAGHAGHI M and VOROBYOV S A. Subspace leakage analysis and improved DOA estimation with small sample size[J]. IEEE Transactions on Signal Processing, 2015, 63(12): 3251–3265. doi: 10.1109/TSP.2015.2422675
    AUGUIN N, MORALES-JIMENEZ D, MCKAY M R, et al. Large-dimensional behavior of regularized Maronna’s M-estimators of covariance matrices[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3259–3272. doi: 10.1109/TSP.2018.2831629
    LIU T H and MENDEL J M. A subspace-based direction finding algorithm using fractional lower order statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(8): 1605–1613. doi: 10.1109/78.934131
    VISURI S, OJA H, and KOIVUNEN V. Subspace-based direction-of-arrival estimation using nonparametric statistics[J]. IEEE Transactions on Signal Processing, 2001, 49(9): 2060–2073. doi: 10.1109/78.942634
    KOZICK R J and SADLER B M. Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures[J]. IEEE Transactions on Signal Processing, 2000, 48(12): 3520–3525. doi: 10.1109/78.887045
    HAMPEL F R, RONCHETTI E M, ROUSSEEUW P J, et al. Robust Statistics: The Approach Based on Influence Functions[M]. New York, USA: John Wiley & Sons Inc., 1986: 275–276.
    BAKTASH E, KARIMI M, and WANG Xiaodong. Maximum-likelihood direction finding under elliptical noise using the EM algorithm[J]. IEEE Communications Letters, 2019, 23(6): 1041–1044. doi: 10.1109/LCOMM.2019.2911518
    PAN Yan, DUAN Fabing, CHAPEAU-BLONDEAU F, et al. Noise enhancement in robust estimation of location[J]. IEEE Transactions on Signal Processing, 2018, 66(8): 1953–1966. doi: 10.1109/TSP.2018.2802463
  • 加載中
圖(7)
計量
  • 文章訪問數(shù):  3779
  • HTML全文瀏覽量:  1008
  • PDF下載量:  83
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-24
  • 修回日期:  2020-02-24
  • 網(wǎng)絡(luò)出版日期:  2020-03-21
  • 刊出日期:  2020-06-04

目錄

    /

    返回文章
    返回