一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于隨機森林的流處理檢查點性能預(yù)測

褚征 于炯

褚征, 于炯. 基于隨機森林的流處理檢查點性能預(yù)測[J]. 電子與信息學(xué)報, 2020, 42(6): 1452-1459. doi: 10.11999/JEIT190552
引用本文: 褚征, 于炯. 基于隨機森林的流處理檢查點性能預(yù)測[J]. 電子與信息學(xué)報, 2020, 42(6): 1452-1459. doi: 10.11999/JEIT190552
Zheng CHU, Jiong YU. Performance Prediction Based on Random Forest for the Stream Processing Checkpoint[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1452-1459. doi: 10.11999/JEIT190552
Citation: Zheng CHU, Jiong YU. Performance Prediction Based on Random Forest for the Stream Processing Checkpoint[J]. Journal of Electronics & Information Technology, 2020, 42(6): 1452-1459. doi: 10.11999/JEIT190552

基于隨機森林的流處理檢查點性能預(yù)測

doi: 10.11999/JEIT190552 cstr: 32379.14.JEIT190552
基金項目: 國家自然科學(xué)基金(61862060, 61462079, 61562086, 61562078),新疆大學(xué)博士生科技創(chuàng)新項目(XJUBSCX-201901)
詳細(xì)信息
    作者簡介:

    褚征:男,1991年生,博士生,研究方向為分布式計算、內(nèi)存計算和機器學(xué)習(xí)

    于炯:男,1966年生,教授,研究方向為分布式計算、內(nèi)存計算和綠色計算

    通訊作者:

    于炯 yujiong@xju.edu.cn

  • 中圖分類號: TN919; TP311

Performance Prediction Based on Random Forest for the Stream Processing Checkpoint

Funds: The National Natural Science Foundation of China (61862060, 61462079, 61562086, 61562078), The Doctoral Science, Technology Innovation Project in Xinjiang University (XJUBSCX-201901)
  • 摘要:

    物聯(lián)網(wǎng)(IoT)的發(fā)展引起流數(shù)據(jù)在數(shù)據(jù)量和數(shù)據(jù)類型兩方面不斷增長。由于實時處理場景的不斷增加和基于經(jīng)驗知識的配置策略存在缺陷,流處理檢查點配置策略面臨著巨大的挑戰(zhàn),如費事費力,易導(dǎo)致系統(tǒng)異常等。為解決這些挑戰(zhàn),該文提出基于回歸算法的檢查點性能預(yù)測方法。該方法首先分析了影響檢查點性能的6種特征,然后將訓(xùn)練集的特征向量輸入到隨機森林回歸算法中進行訓(xùn)練,最后,使用訓(xùn)練好的算法對測試數(shù)據(jù)集進行預(yù)測。實驗結(jié)果表明,與其它機器學(xué)習(xí)算法相比,隨機森林回歸算法在CPU密集型基準(zhǔn)測試,內(nèi)存密集型基準(zhǔn)測試和網(wǎng)絡(luò)密集型基準(zhǔn)測試上針對檢查點性能的預(yù)測具有誤差低,準(zhǔn)確率高和運行高效的優(yōu)點。

  • 圖  1  檢查點策略配置不合理示例

    圖  2  隨機森林算法模型

    圖  3  基準(zhǔn)測試

    圖  4  不同回歸算法的預(yù)測準(zhǔn)確率和不同特征重要性評分

    圖  5  不同回歸算法的執(zhí)行效率

    表  1  動態(tài)特征總結(jié)

    特征名稱描述
    本地進入記錄數(shù)算子每秒接收的本地記錄數(shù)。
    遠(yuǎn)程進入記錄數(shù)算子每秒接收的遠(yuǎn)程記錄數(shù)。
    本地緩存記錄數(shù)算子每秒緩存的本地記錄數(shù)。
    遠(yuǎn)程緩存記錄數(shù)算子每秒緩存的遠(yuǎn)程記錄數(shù)。
    下載: 導(dǎo)出CSV

    表  2  數(shù)據(jù)集描述

    基準(zhǔn)測試樣本數(shù)量特征數(shù)量訓(xùn)練樣本數(shù)量預(yù)測樣本數(shù)量
    CKCPU47100332376809420
    CKMEM1029017282322058
    CKNET18900524151203780
    下載: 導(dǎo)出CSV

    表  3  不同回歸算法預(yù)測誤差結(jié)果

    基準(zhǔn)測試回歸算法MAERMSEMediaAE
    CKCPUSVR poly0.1070061.90002337.921288
    SVR linear0.09500627.0633837.529361
    KNN0.1080060.3238700.286494
    BPNN0.0423800.0700430.129856
    RF0.0401780.0688110.125560
    CKMEMSVR poly0.1150070.03756010.924428
    SVR linear0.1780102.5245964.085918
    KNN0.1480080.3706600.373577
    BPNN0.0973560.1994610.214980
    RF0.0960460.1966190.206272
    CKMEMSVR poly0.0910050.6456190.634070
    SVR linear0.3010170.5458330.523365
    KNN0.1020060.7428730.742375
    BPNN0.0203430.1038570.147659
    RF0.0195010.0893150.089082
    下載: 導(dǎo)出CSV
  • 彭建華, 張帥, 許曉明, 等. 物聯(lián)網(wǎng)中一種抗大規(guī)模天線陣列竊聽者的噪聲注入方案[J]. 電子與信息學(xué)報, 2019, 41(1): 67–73. doi: 10.11999/JEIT180342

    PENG Jianhua, ZHANG Shuai, XU Xiaoming, et al. A noise injection scheme resistant to massive MIMO eavesdropper in IoT[J]. Journal of Electronics &Information Technology, 2019, 41(1): 67–73. doi: 10.11999/JEIT180342
    劉素艷, 劉元安, 吳帆, 等. 物聯(lián)網(wǎng)中基于相似性計算的傳感器搜索[J]. 電子與信息學(xué)報, 2018, 40(12): 3020–3027. doi: 10.11999/JEIT171085

    LIU Suyan, LIU Yuan’an, WU Fan, et al. Sensor search based on sensor similarity computing in the Internet of Things[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3020–3027. doi: 10.11999/JEIT171085
    CARBONE P, EWEN S, FóRA G, et al. State management in Apache Flink?: Consistent stateful distributed stream processing[J]. Proceedings of the VLDB Endowment, 2017, 10(12): 1718–1729. doi: 10.14778/3137765.3137777
    VENKIVOLU D R and NALE M N. Adaptive encryption in checkpoint recovery of file transfers[P]. US, 20190306221, 2019-10-03.
    KIM Y, NAKAMURA J, KATAYAMA Y, et al. A cooperative partial snapshot algorithm for checkpoint-rollback recovery of large-scale and dynamic distributed systems[C]. The 6th International Symposium on Computing and Networking Workshops (CANDARW), Takayama, Japan, 2018: 285–291. doi: 10.1109/CANDARW.2018.00060.
    TAO Yangyang and YU Shucheng. kFHCO: Optimal VM consolidation via k-Factor horizontal checkpoint oversubscription[C]. 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, USA, 2019: 380–384. doi: 10.1109/ICCNC.2019.8685604.
    GOUNTIA D and ROY S. Checkpoints assignment on cyber-physical digital microfluidic biochips for early detection of hardware Trojans[C]. The 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 2019: 16–21. doi: 10.1109/ICOEI.2019.8862598.
    ZHANG Hanlin, CHEN Ningjiang, TANG Yusi, et al. Multi-level container checkpoint performance optimization strategy in SDDC[C]. The 4th International Conference on Big Data and Computing, Guangzhou, China, 2019: 253–259. doi: 10.1145/3335484.3335487.
    TITOUNA C, MOUMEN H, and ARI A A A. Cluster head recovery algorithm for wireless sensor networks[C]. The 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, France, 2019: 1905–1910. doi: 10.1109/CoDIT.2019.8820414.
    OVENS S and WOELFEL P. Strongly linearizable implementations of snapshots and other types[C]. 2019 ACM Symposium on Principles of Distributed Computing, Toronto, Canada, 2019: 197–206. doi: 10.1145/3293611.3331632.
    ATHEY S, TIBSHIRANI J, WAGER S, et al. Gemeralized random ferests[J]. Annals of statistics, 2019, 47(2): 1148–1178. doi: 10.1214/18-AOS1709
    CHOI J, GU B, CHIN S, et al. Machine learning predictive model based on national data for fatal accidents of construction workers[J]. Automation in Construction, 2020, 110: 102974. doi: 10.1016/j.autcon.2019.102974
    LYU J and MANOOCHEHRI S. Dimensional prediction for FDM machines using artificial neural network and support vector regression[C]. ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Anaheim, USA, 2019. doi: 10.1115/DETC2019-97963.
    DABERDAKU S, TAVAZZI E, and DI CAMILLO B. Interpolation and K-nearest neighbours combined imputation for longitudinal ICU laboratory data[C]. 2019 IEEE International Conference on Healthcare Informatics (ICHI), Xi’an, China, 2019: 1–3. doi: 10.1109/ICHI.2019.8904624.
    ASAAD R R and ALI R I. Back Propagation Neural Network (BPNN) and sigmoid activation function in multi-layer networks[J]. Academic Journal of Nawroz University, 2019, 8(4): 216–221. doi: 10.25007/ajnu.v8n4a464
  • 加載中
圖(5) / 表(3)
計量
  • 文章訪問數(shù):  4602
  • HTML全文瀏覽量:  1367
  • PDF下載量:  116
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-23
  • 修回日期:  2020-02-17
  • 網(wǎng)絡(luò)出版日期:  2020-03-10
  • 刊出日期:  2020-06-22

目錄

    /

    返回文章
    返回