相似度自適應估計的物聯(lián)網(wǎng)實體高效搜索方法
doi: 10.11999/JEIT190541 cstr: 32379.14.JEIT190541
-
1.
重慶郵電大學通信與信息工程學院 重慶 400065
-
2.
重慶高校市級光通信與網(wǎng)絡重點實驗室 重慶 400065
-
3.
泛在感知與互聯(lián)重慶市重點實驗室 重慶 400065
Efficient Search Method for IoT Entities with Similarity Adaptive Estimation
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Optical Communication and Networks Key Laboratory of Chongqing, Chongqing 400065, China
-
3.
Ubiquitous Sensing and Networking Key Laboratory of Chongqing, Chongqing 400065, China
-
摘要:
針對現(xiàn)有相似實體搜索方法缺乏對于觀測序列長度的自適應性,且搜索過程數(shù)據(jù)存儲開銷過大,搜索結果準確性較低的問題,該文提出相似度自適應估計的物聯(lián)網(wǎng)實體高效搜索方法(SAEES)。首先,設計了輕量級觀測序列分段表示方法,對傳感器采集的實體原始觀測序列進行輕量級分段壓縮表示,以降低實體觀測序列的存儲開銷。然后,提出了觀測序列相似度自適應估計方法,實現(xiàn)對不同觀測序列長度的實體相似性的準確估計。最后,設計了高效的相似實體搜索匹配方法,依據(jù)所估計的實體相似度進行實體的準確搜索匹配。仿真結果表明,所提方法可大幅提高相似實體搜索的效率。
-
關鍵詞:
- 物聯(lián)網(wǎng) /
- 實體搜索 /
- 相似度 /
- 自適應估計
Abstract:The existing similar entity search method has poor adaptability to the length of the observed sequence, and the data storage overhead in the search process is too large, and the accuracy of the search result is insufficient. To this end, an efficient search method is proposed for the IoT Entity Search with Similarity Adaptive Estimation (SAEES). Firstly, in order to reduce the storage overhead of the entity observation sequence, a lightweight method of segmentation representation of the observation sequence is designed to perform a lightweight segmentation compression representation of the original observation sequence of the entity collected by the sensor. Then, in order to achieve an accurate estimation of the similarity of entities with different observation sequence lengths, an adaptive estimation method for observation sequence similarity is proposed. Finally, by exploiting the designed efficient similar entity search matching method, the exact search matching of the entity is completed according to the estimated entity similarity. The simulation results show that the proposed method can greatly improve the efficiency of similar entity search.
-
Key words:
- Internet of Things (IoT) /
- Entity search /
- Similarity /
- Adaptive estimation
-
WU Dapeng, SHI Hang, WANG Honggang, et al. A feature-based learning system for internet of things applications[J]. IEEE Internet of Things Journal, 2019, 6(2): 1928–1937. doi: 10.1109/JIOT.2018.2884485 ZHANG Puning and MA Jie. Channel characteristic aware privacy protection mechanism in WBAN[J]. Sensors, 2018, 18(8): 2403. doi: 10.3390/s18082403 ZHANG Puning, KANG Xuyuan, WU Dapeng, et al. High-accuracy entity state prediction method based on deep belief network toward IoT search[J]. IEEE Wireless Communications Letters, 2019, 8(2): 492–495. doi: 10.1109/LWC.2018.2877639 ZHANG Puning, KANG Xuyuan, LIU Yuzhe, et al. Cooperative willingness aware collaborative caching mechanism towards cellular D2D communication[J]. IEEE Access, 2018, 6: 67046–67056. doi: 10.1109/ACCESS.2018.2873662 WU Dapeng, LIU Bingxu, YANG Qing, et al. Social-aware cooperative caching mechanism in mobile social networks[J]. Journal of Network and Computer Applications, 2020, 149: 102457. doi: 10.1016/j.jnca.2019.102457 高云全, 李小勇, 方濱興. 物聯(lián)網(wǎng)搜索技術綜述[J]. 通信學報, 2015, 36(12): 57–76. doi: 10.11959/j.issn.1000-436x.2015315GAO Yunquan, LI Xiaoyong, and FANG Binxing. Survey on the search of internet of things[J]. Journal on Communications, 2015, 36(12): 57–76. doi: 10.11959/j.issn.1000-436x.2015315 張普寧, 劉元安, 吳帆, 等. 物聯(lián)網(wǎng)中適用于內容搜索的實體狀態(tài)匹配預測方法[J]. 電子與信息學報, 2015, 37(12): 2815–2820. doi: 10.11999/JEIT150191ZHANG Puning, LIU Yuan’an, WU Fan, et al. An entity state matching prediction method for content-based search in the internet of things[J]. Journal of Electronics &Information Technology, 2015, 37(12): 2815–2820. doi: 10.11999/JEIT150191 鄒宇馳, 劉松, 于楠, 等. 基于搜索的物聯(lián)網(wǎng)設備識別框架[J]. 信息安全學報, 2018, 3(4): 25–40. doi: 10.19363/J.cnki.cn10-1380/tn.2018.07.03ZOU Yuchi, LIU Song, YU Nan, et al. IoT device recognition framework based on Web search[J]. Journal of Cyber Security, 2018, 3(4): 25–40. doi: 10.19363/J.cnki.cn10-1380/tn.2018.07.03 李強, 賈煜璇, 宋金珂, 等. 網(wǎng)絡空間物聯(lián)網(wǎng)信息搜索[J]. 信息安全學報, 2018, 3(5): 38–53.LI Qiang, JIA Yuxuan, SONG Jinke, et al. Search of internet of thing information in the cyberspace[J]. Journal of Cyber Security, 2018, 3(5): 38–53. MA Huadong and LIU Wu. A progressive search paradigm for the internet of things[J]. IEEE MultiMedia, 2018, 25(1): 76–86. doi: 10.1109/MMUL.2017.265091429 YAP K K, SRINIVASAN V, and MOTANI M. Max: Wide area human-centric search of the physical world[J]. ACM Transactions on Sensor Networks, 2008, 4(4): 26. doi: 10.1145/1387663.1387672 WANG Haodong, TAN C C, and LI Qun. Snoogle: A search engine for pervasive environments[J]. IEEE Transactions on Parallel and Distributed Systems, 2010, 21(8): 1188–1202. doi: 10.1109/TPDS.2009.145 TAN C C, SHENG Bo, WANG Haodong, et al. Microsearch: A search engine for embedded devices used in pervasive computing[J]. ACM Transactions on Embedded Computing Systems, 2010, 9(4): 43. doi: 10.1145/1721695.1721709 FATHY Y, BARNAGHI P, and TAFAZOLLI R. Large-scale indexing, discovery, and ranking for the Internet of Things (IoT)[J]. ACM Computing Surveys, 2018, 51(2): 29. doi: 10.1145/3154525 劉強強, 余黎青, 趙鵬, 等. 基于移動平臺的圖像檢索系統(tǒng)[J]. 計算機技術與發(fā)展, 2016, 26(11): 10–13.LIU Qiangqiang, YU Liqing, ZHAO Peng, et al. A novel image retrieval system based on mobile platform[J]. Computer Technology and Development, 2016, 26(11): 10–13. TRUONG C, R?MER K, and CHEN Kai. Fuzzy-based sensor search in the web of things[C]. The 3rd IEEE International Conference on the Internet of Things, Wuxi, China, 2012: 127–134. doi: 10.1109/IOT.2012.6402314. 劉素艷, 劉元安, 吳帆, 等. 物聯(lián)網(wǎng)中基于相似性計算的傳感器搜索[J]. 電子與信息學報, 2018, 40(12): 3020–3027.LIU Suyan, LIU Yuanan, WU Fan, et al. Sensor search based on sensor similarity computing in the internet of things[J]. Journal of Electronics &Information Technology, 2018, 40(12): 3020–3027. LI Zhidu, JIANG Yuming, GAO Yuehong, et al. On buffer-constrained throughput of a wireless-powered communication system[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(2): 283–297. doi: 10.1109/JSAC.2018.2872374 PATTAR S, BUYYA R, VENUGOPAL K R, et al. Searching for the IoT resources: Fundamentals, requirements, comprehensive review, and future directions[J]. IEEE Communications Surveys & Tutorials, 2018, 20(3): 2101–2132. doi: 10.1109/COMST.2018.2825231 ZHANG Zufan, ZENG Tian, YU Xiulan, et al. Social-aware D2D pairing for cooperative video transmission using matching theory[J]. Mobile Networks and Applications, 2018, 23(3): 639–649. doi: 10.1007/s11036-017-0973-z Intel Berkeley Research Lab. Intel berkeley research lab sensors data[EB/OL]. http://db.csail.mit.edu/labdata/labdata.html, 2004. -