串?dāng)_感知的空分彈性光網(wǎng)絡(luò)頻譜轉(zhuǎn)換器稀疏配置和資源分配方法
doi: 10.11999/JEIT190533 cstr: 32379.14.JEIT190533
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
-
2.
重慶郵電大學(xué)工業(yè)物聯(lián)網(wǎng)與網(wǎng)絡(luò)化控制教育部重點實驗室 重慶 400065
Crosstalk-aware Spectrum Converters Sparse Configuration and Resource Allocation for Space Division Multiplexing Elastic Optical Networks
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
摘要:
針對大容量多芯光纖空分復(fù)用彈性光網(wǎng)絡(luò)(SDM-EON)中芯間串?dāng)_導(dǎo)致業(yè)務(wù)傳輸質(zhì)量下降和阻塞率上升的問題,該文提出了節(jié)點稀疏配置頻譜轉(zhuǎn)換器降低芯間串?dāng)_的路由纖芯頻譜分配方法。該方法根據(jù)網(wǎng)絡(luò)中節(jié)點中介中心性稀疏配置頻譜轉(zhuǎn)換器。在業(yè)務(wù)路由階段,設(shè)計綜合考慮光路負(fù)載和節(jié)點頻譜轉(zhuǎn)換能力的光路選擇的權(quán)重方法;為了降低串?dāng)_,在纖芯頻譜分配階段,設(shè)計纖芯分組和頻譜分區(qū)分配方法;最后,針對串?dāng)_較大的業(yè)務(wù),采用頻譜轉(zhuǎn)換以降低業(yè)務(wù)串?dāng)_和改善帶寬阻塞率。仿真結(jié)果表明,所提算法能有效地提高頻譜利用率,降低因芯間串?dāng)_導(dǎo)致的帶寬阻塞率。
-
關(guān)鍵詞:
- 空分復(fù)用彈性光網(wǎng)絡(luò) /
- 芯間串?dāng)_ /
- 頻譜轉(zhuǎn)換器 /
- 纖芯路由頻譜分配 /
- 帶寬阻塞率
Abstract:In order to solve the problem of inter-core crosstalk in Space Division Multiplexing Elastic Optical Network (SDM-EON), which leads to the decline of service transmission quality and the increase of blocking probability, a routing, fiber core and spectrum allocation method for reducing inter-core crosstalk through sparse configuration spectrum converter at nodes is proposed in the paper. This method configures the spectrum converter according to the node’s centrality sparseness in SDM-EON. During service routing, a weighting method for optical path selection considering both optical path load and node spectrum conversion capability is designed.to reduce crosstalk. In the core spectrum allocation stage, a method of fiber core grouping and spectrum partition allocation is utilized. Finally, spectrum conversion is used to reduce traffic crosstalk and improve bandwidth blocking probability for services with high crosstalk. The simulation results show that the proposed algorithm can effectively improve the spectrum utilization and reduce the bandwidth blocking probability caused by fibers inter-core crosstalk.
-
表 1 NSCC-XT-RSCA算法
(1) 預(yù)處理階段,根據(jù)式(2)計算網(wǎng)絡(luò)拓?fù)渌泄?jié)點的中介中心性,根據(jù)給定的比例選取節(jié)點作為SC+節(jié)點配置頻譜轉(zhuǎn)換器;根據(jù)2.4節(jié)所述
將纖芯頻譜進(jìn)行分組和分區(qū);(2) 業(yè)務(wù)請求到達(dá)后,確定業(yè)務(wù)調(diào)制格式,并計算業(yè)務(wù)在該調(diào)制格式所需頻隙數(shù); (3) 根據(jù)光路權(quán)重公式(3),計算源、目的節(jié)點間K條候選最短長度光路權(quán)重,根據(jù)權(quán)值對候選光路進(jìn)行降序排序,設(shè)變量k=1; (4) 判斷第k條光路上是否存在滿足業(yè)務(wù)傳輸?shù)目捎妙l譜塊,如有,轉(zhuǎn)步驟(7),否則,轉(zhuǎn)步驟(5); (5) 判斷光路上是否有SC+節(jié)點,如有,則轉(zhuǎn)步驟(6),否則,轉(zhuǎn)步驟(8); (6) 判斷光路是否有經(jīng)過SC+節(jié)點轉(zhuǎn)換的可用頻譜塊,若有,轉(zhuǎn)步驟(7),否則,轉(zhuǎn)步驟(8); (7) 根據(jù)式(4)~式(6)計算光路上的纖芯頻譜分配成本CP,確定頻譜塊,轉(zhuǎn)步驟(9); (8) 若k>K,則業(yè)務(wù)被阻塞;否則,令k加1,轉(zhuǎn)步驟(4); (9) 判斷$\left\lceil { {C^p} } \right\rceil \ge {H_p}$?若是,則業(yè)務(wù)在光路p上受串?dāng)_影響較大,p=1, 2, ···, k,轉(zhuǎn)步驟(10),否則轉(zhuǎn)步驟(16); (10) 根據(jù)式(1)計算業(yè)務(wù)所受串?dāng)_,若該串?dāng)_小于串?dāng)_閾值條件,則轉(zhuǎn)步驟(16),否則,轉(zhuǎn)步驟(11); (11) 判斷光路上是否有SC+節(jié)點,若有,轉(zhuǎn)步驟(12),否則,阻塞業(yè)務(wù); (12) 判斷光路是否存在能降低XT值的頻譜塊,若有,轉(zhuǎn)步驟(14),否則,轉(zhuǎn)步驟(13); (13) 判斷光路信號是否為最低調(diào)制格式,如是,則阻塞業(yè)務(wù),否則,降低調(diào)制格式,減少業(yè)務(wù)需求的頻譜塊數(shù)目,轉(zhuǎn)步驟(2); (14) 判斷是否存在2個及以上節(jié)點為SC+節(jié)點,如有,轉(zhuǎn)步驟(15),否則,轉(zhuǎn)步驟(10); (15) 根據(jù)式(7)計算各SC+節(jié)點的使用排名,選取排名高的節(jié)點使用SC+功能,轉(zhuǎn)步驟(10); (16) 業(yè)務(wù)成功傳輸,輸出業(yè)務(wù)所選擇的光路p、纖芯編號、頻譜資源以及SC+節(jié)點頻譜轉(zhuǎn)換要求。 下載: 導(dǎo)出CSV
-
SHEN Gangxiang, ZHANG Ya, ZHOU Xu, et al. Ultra-dense wavelength switched network: A special EON paradigm for metro optical networks[J]. IEEE Communications Magazine, 2018, 56(2): 189–195. doi: 10.1109/MCOM.2018.1700025 鮑寧海, 蘇國慶, 陳靜波. 恢復(fù)時間敏感的光網(wǎng)絡(luò)混合通路保護(hù)算法[J]. 重慶郵電大學(xué)學(xué)報: 自然科學(xué)版, 2017, 29(3): 313–319. doi: 10.3979/j.issn.1673-825X.2017.03.005BAO Ninghai, SU Guoqing, and CHEN Jingbo. Recovery-time aware hybrid path protection algorithm in optical networks[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2017, 29(3): 313–319. doi: 10.3979/j.issn.1673-825X.2017.03.005 趙國鋒, 邢媛, 段潔, 等. 物聯(lián)網(wǎng)中時間驅(qū)動的ICN緩存機制研究[J]. 重慶郵電大學(xué)學(xué)報: 自然科學(xué)版, 2018, 30(1): 68–74. doi: 10.3979/j.issn.1673-825X.2018.01.008ZHAO Guofeng, XING Yuan, DUAN Jie, et al. Time-driven ICN caching mechanism in internet of things[J]. Journal of Chongqing University of Posts and Telecommunications:Natural Science Edition, 2018, 30(1): 68–74. doi: 10.3979/j.issn.1673-825X.2018.01.008 TODE H and HIROTA Y. Routing, spectrum, and core and/or mode assignment on space-division multiplexing optical networks[Invited][J]. Journal of Optical Communications and Networking, 2017, 9(1): A99–A113. doi: 10.1364/JOCN.9.000A99 SARIDIS G M, ALEXANDROPOULOS D, ZERVAS G, et al. Survey and evaluation of space division multiplexing: From technologies to optical networks[J]. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2136–2156. doi: 10.1109/COMST.2015.2466458 LIU Huanlin, SANG Liying, CHEN Yong, et al. Space-frequency joint contention scheduling algorithm based on AoD in SDM-EONs[J]. Optical Fiber Technology, 2019, 47: 93–101. doi: 10.1016/j.yofte.2018.11.005 劉煥淋, 方菲, 黃俊, 等. 面向業(yè)務(wù)的彈性光網(wǎng)絡(luò)光路損傷感知能效路由策略[J]. 電子與信息學(xué)報, 2019, 41(5): 1202–1209. doi: 10.11999/JEIT180580LIU Huanlin, FANG Fei, HUANG Jun, et al. Energy efficiency routing strategy with lightpath impairment awareness in service-oriented elastic optical networks[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1202–1209. doi: 10.11999/JEIT180580 MUHAMMAD M, ZERVAS G, and FORCHHEIMER R. Resource allocation for space-division multiplexing: Optical white box versus optical black box networking[J]. Journal of Lightwave Technology, 2015, 33(23): 4928–4941. doi: 10.1109/JLT.2015.2493123 FUJII S, HIROTA Y, TODE H, et al. On-demand spectrum and core allocation for reducing crosstalk in multicore fibers in elastic optical networks[J]. Journal of Optical Communications and Networking, 2014, 6(12): 1059–1071. doi: 10.1364/jocn.6.001059 MORITA K and HIRATA K. Dynamic spectrum allocation method for reducing crosstalk in multi-core fiber networks[C]. 2017 IEEE International Conference On Information Networking (ICOIN), Da Nang, Vietnam, 2017: 686–688. doi: 10.1109/ICOIN.2017.7899583. ZHAO Yongli, ZHU Ye, WANG Chunhui, et al. Super-channel oriented routing, spectrum and core assignment under crosstalk limit in spatial division multiplexing elastic optical networks[J]. Optical Fiber Technology, 2017, 36: 249–254. doi: 10.1016/j.yofte.2017.04.006 YANG Mingcong, ZHANG Yongbing, and WU Qian. Routing, spectrum, and core assignment in SDM-EONs with MCF: Node-arc ILP/MILP methods and an efficient XT-aware heuristic algorithm[J]. Journal of Optical Communications and Networking, 2018, 10(3): 195–208. doi: 10.1364/JOCN.10.000195 YUAN Hui, FURDEK M, Muhammad A, et al. Space-division multiplexing in data center networks: On multi-core fiber solutions and crosstalk-suppressed resource allocation[J]. Journal of Optical Communications and Networking, 2018, 10(4): 272–288. doi: 10.1364/JOCN.10.000272 JU Min, ZHOU Fen, XIAO Shilin, et al. Spectrum shared p-cycle design in elastic optical networks with/without spectrum conversion capabilities[C]. 2016 International Conference on Network Games, Control, and Optimization, Avignon, France, 2016: 147–157. doi: 10.1007/978-3-319-51034-7_14. LIU Huanlin, SANG Liying, and CHEN Yong. A multicast contention resolution scheme based on shared spectrum converter for elastic optical switching node[J]. Optik, 2017, 144: 316–323. doi: 10.1016/j.ijleo.2017.06.117 TU Jiajing, SAITOH K, KOSHIBA M, et al. Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber[J]. Optics Express, 2012, 20(14): 15157–15170. doi: 10.1364/OE.20.015157 KOSHIBA M, SAITOH K, TAKENAGA K, et al. Analytical expression of average power-coupling coefficients for estimating intercore crosstalk in multicore fibers[J]. IEEE Photonics Journal, 2012, 4(5): 1987–1995. doi: 10.1109/JPHOT.2012.2221085 -