一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

SVM算法在硬件木馬旁路分析檢測(cè)中的應(yīng)用

佟鑫 李瑩 陳嵐

佟鑫, 李瑩, 陳嵐. SVM算法在硬件木馬旁路分析檢測(cè)中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2020, 42(7): 1643-1651. doi: 10.11999/JEIT190532
引用本文: 佟鑫, 李瑩, 陳嵐. SVM算法在硬件木馬旁路分析檢測(cè)中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2020, 42(7): 1643-1651. doi: 10.11999/JEIT190532
Xin TONG, Ying LI, Lan CHEN. Application of SVM Machine Learning to Hardware Trojan Detection Using Side-channel Analysis[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1643-1651. doi: 10.11999/JEIT190532
Citation: Xin TONG, Ying LI, Lan CHEN. Application of SVM Machine Learning to Hardware Trojan Detection Using Side-channel Analysis[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1643-1651. doi: 10.11999/JEIT190532

SVM算法在硬件木馬旁路分析檢測(cè)中的應(yīng)用

doi: 10.11999/JEIT190532 cstr: 32379.14.JEIT190532
基金項(xiàng)目: 國(guó)家物聯(lián)網(wǎng)與智慧城市重點(diǎn)專項(xiàng)對(duì)接(Z181100003518002),北京市自然科學(xué)基金(4184106),北京市科技專項(xiàng)(Z171100001117147)
詳細(xì)信息
    作者簡(jiǎn)介:

    佟鑫:女,1987年生,助理研究員,主要研究方向?yàn)槲锫?lián)網(wǎng)硬件安全與集成電路設(shè)計(jì)

    李瑩:女,1982年生,副研究員,主要研究方向?yàn)槲锫?lián)網(wǎng)硬件安全與集成電路設(shè)計(jì)

    陳嵐:女,1968年生,研究員,博士生導(dǎo)師,主要研究方向?yàn)橛?jì)算機(jī)系統(tǒng)架構(gòu)與集成電路設(shè)計(jì)、集成電路硬件安全

    通訊作者:

    李瑩 liying1@ime.ac.cn

  • 1) 將正常組數(shù)據(jù)(Trojan Free, TF)標(biāo)記為1,木馬組(T1, T2, ···)數(shù)據(jù)為–1。2) 按照采樣模式對(duì)數(shù)據(jù)進(jìn)行分組抽樣,每次抽出一部分木馬數(shù)據(jù)做測(cè)試驗(yàn)證集,其余做訓(xùn)練集,測(cè)試集可選擇未知標(biāo)簽的數(shù)據(jù)。3) 閾值A(chǔ)為用戶期望達(dá)到的模型測(cè)試準(zhǔn)確率閾值B是用戶定義的數(shù)據(jù)組中木馬個(gè)數(shù)的占比,用于判斷該組數(shù)據(jù)是否為木馬組。
  • 4) 閾值A(chǔ)為用戶期望達(dá)到的模型測(cè)試準(zhǔn)確率閾值B是用戶定義的數(shù)據(jù)組中占比多數(shù)的數(shù)據(jù)是否為木馬,用于判斷該組數(shù)據(jù)是否為木馬組。
  • 中圖分類號(hào): TN406

Application of SVM Machine Learning to Hardware Trojan Detection Using Side-channel Analysis

Funds: The National Internet of Things and Smart City Key Project Docking(Z181100003518002), The Natural Science Foundation of Beijing (4184106), The Beijing Science and Technology Project (Z171100001117147)
  • 摘要:

    集成電路(ICs)面臨著硬件木馬(HTs)造成的嚴(yán)峻威脅。傳統(tǒng)的旁路檢測(cè)手段中黃金模型不易獲得,且隱秘的木馬可以利用固硬件聯(lián)合操作將惡意行為隱藏在常規(guī)的芯片運(yùn)行中,更難以檢測(cè)。針對(duì)這種情況,該文提出利用機(jī)器學(xué)習(xí)支持向量機(jī)(SVM)算法從系統(tǒng)操作層次對(duì)旁路分析檢測(cè)方法進(jìn)行改進(jìn)。使用現(xiàn)場(chǎng)可編程門陣列(FPGA)驗(yàn)證的實(shí)驗(yàn)結(jié)果表明,存在黃金模型時(shí),有監(jiān)督SVM可得到86.8%的訓(xùn)練及測(cè)試綜合的平均檢測(cè)準(zhǔn)確率,進(jìn)一步采用分組和歸一化去離群點(diǎn)方法可將檢測(cè)率提升4%。若黃金模型無法獲得,則可使用半監(jiān)督SVM方法進(jìn)行檢測(cè),平均檢測(cè)率為52.9%~79.5%。與現(xiàn)有同類方法相比,驗(yàn)證了SVM算法在指令級(jí)木馬檢測(cè)中的有效性,明確了分類學(xué)習(xí)條件與檢測(cè)性能的關(guān)系。

  • 圖  1  基于SVM算法的硬件木馬檢測(cè)框架

    圖  2  指令功耗數(shù)據(jù)分組的SVM有監(jiān)督學(xué)習(xí)分類流程

    圖  3  指令功耗數(shù)據(jù)分組的SVM半監(jiān)督學(xué)習(xí)分類流程

    圖  4  半監(jiān)督學(xué)習(xí)下準(zhǔn)確率均值隨TF數(shù)據(jù)占比變化的情況

    圖  5  各條指令表現(xiàn)的敏感度差異情況

    圖  6  MOD4不同條件下的準(zhǔn)確率變化情況

    表  1  指令集

    指令序號(hào)及名稱指令類型描述
    1-NOP類型1 NOP無操作
    2-MOV_A_RR
    5-MOV_RR_A
    8-MOV_D_A
    3-MOV_A_D
    6-MOV_RR_D
    9-MOV_D_RR
    4- MOV_A_DATA
    7-MOV_RR_DATA
    10-MOV_D_DATA
    類型2 MOV移動(dòng)存儲(chǔ)器,復(fù)制操作數(shù)2到操作數(shù)1
    11-ADD_A_RR12-ADD_A_D13-ADD_A_DATA類型3 ADD加法器加操作,將操作數(shù)的值加到加法器上并存儲(chǔ)
    14-SUBB_A_RR15-SUBB_A_D16-SUBB_A_DATA類型4 SUBB從加法器中借位減操作
    17-INC_A18-INC_D19-INC_RR類型5 INC增加操作數(shù)
    20-JMP_A_DPTR類型6 JMP跳轉(zhuǎn)至數(shù)據(jù)指針+ DPTR代表的加法器地址
    21-JNC類型7 JNC跳轉(zhuǎn)至相關(guān)地址如果進(jìn)位沒有設(shè)置
    下載: 導(dǎo)出CSV

    表  2  木馬基準(zhǔn)電路

    名稱描述
    HT1MC8051-T200,這個(gè)木馬在空閑模式激活8051內(nèi)部計(jì)時(shí)器
    HT2MC8051-T300,這個(gè)木馬在8051通過UART發(fā)送特定數(shù)據(jù)串時(shí)被觸發(fā)。目的是通過UART收到任意信息
    HT3MC8051-T500,這個(gè)木馬的觸發(fā)器檢測(cè)特定的命令,當(dāng)木馬激活后其負(fù)載可以替換特定的數(shù)據(jù)
    HT4MC8051-T600,這個(gè)木馬使得微控制器上運(yùn)行算法的任何跳轉(zhuǎn)失效
    HT5MC8051-T700,這個(gè)木馬用敵人預(yù)設(shè)數(shù)據(jù)替換一些輸入數(shù)據(jù)
    HT6MC8051-T800,這個(gè)木馬當(dāng)UART接收特殊字符時(shí)篡改堆棧指針
    下載: 導(dǎo)出CSV

    表  3  SVM常用核函數(shù)

    名稱表達(dá)式參數(shù)
    線性核$\kappa ({{{x}}_i},{{{x}}_j}) = {{{x}}_i}^{\rm{T}}{{{x}}_j}$
    多項(xiàng)式核$\kappa ({{{x}}_i},{{{x}}_j}) = {({{{x}}_i}^{\rm{T}}{{{x}}_j})^d}$$d \ge 1$為多項(xiàng)式的次數(shù)
    高斯核$\kappa ({ {{x} }_i},{ {{x} }_j}) = \exp \left( - \dfrac{ { { {\left\| { { {{x} }_i} - { {{x} }_j} } \right\|}^2} } }{ {2{\sigma ^2} } }\right)$$\sigma > 0$為高斯核的帶寬
    下載: 導(dǎo)出CSV

    表  4  MOD1檢測(cè)率及運(yùn)行時(shí)間對(duì)比表

    線性核函數(shù)準(zhǔn)確率及運(yùn)行時(shí)間多項(xiàng)式核函數(shù)準(zhǔn)確率及時(shí)間高斯核函數(shù)準(zhǔn)確率及時(shí)間
    訓(xùn)練(%)測(cè)試(%)時(shí)間(s)訓(xùn)練(%)測(cè)試(%)時(shí)間(s)訓(xùn)練(%)測(cè)試(%)時(shí)間(s)
    無預(yù)處理83.30100.000.0262083.3067.310.0691283.3057.240.10902
    預(yù)處理+分組98.0083.300.0126185.8099.100.0392998.0083.300.02698
    下載: 導(dǎo)出CSV

    表  5  MOD3檢測(cè)率及運(yùn)行時(shí)間對(duì)比表

    線性核函數(shù)準(zhǔn)確率及時(shí)間多項(xiàng)式核函數(shù)準(zhǔn)確率及時(shí)間高斯核函數(shù)準(zhǔn)確率及時(shí)間
    訓(xùn)練(%)測(cè)試(%)時(shí)間(s)訓(xùn)練(%)測(cè)試(%)時(shí)間(s)訓(xùn)練(%)測(cè)試(%)時(shí)間(s)
    無預(yù)處理83.30100.000.0694483.30100.000.0619383.30100.000.06800
    預(yù)處理+分組98.8083.300.0652666.70100.000.0718388.0084.900.07139
    下載: 導(dǎo)出CSV

    表  6  MOD4檢測(cè)率及運(yùn)行時(shí)間對(duì)比表

    線性核函數(shù)準(zhǔn)確率及時(shí)間多項(xiàng)式核函數(shù)準(zhǔn)確率及時(shí)間高斯核函數(shù)準(zhǔn)確率及時(shí)間
    訓(xùn)練(%)測(cè)試(%)時(shí)間(s)訓(xùn)練(%)測(cè)試(%)時(shí)間(s)訓(xùn)練(%)測(cè)試(%)時(shí)間(s)
    無預(yù)處理85.9485.080.0204985.6086.070.0380785.8385.380.05487
    預(yù)處理+分組97.8097.800.0122286.7087.000.0390497.6098.400.03709
    下載: 導(dǎo)出CSV
  • 鐘晶鑫, 王建業(yè), 闞保強(qiáng). 基于溫度特征分析的硬件木馬檢測(cè)方法[J]. 電子與信息學(xué)報(bào), 2018, 40(3): 743–749. doi: 10.11999/JEIT170443

    ZHONG Jingxin, WANG Jianye, and KAN Baoqiang. Hardware Trojan detection through temperature characteristics analysis[J]. Journal of Electronics &Information Technology, 2018, 40(3): 743–749. doi: 10.11999/JEIT170443
    RAD R M, WANG Xiaoxiao, TEHRANIPOOR M, et al. Power supply signal calibration techniques for improving detection resolution to hardware Trojans[C]. 2008 IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 2008: 632–639. doi: 10.1109/ICCAD.2008.4681643.
    LAMECH C, AARESTAD J, PLUSQUELLIC J, et al. REBEL and TDC: Two embedded test structures for on-chip measurements of within-die path delay variations[C]. 2011 IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 2011: 170–177. doi: 10.1109/ICCAD.2011.6105322.
    DU Dongdong, NARASIMHAN S, CHAKRABORTY R S, et al. Self-referencing: A scalable side-channel approach for hardware Trojan detection[C]. The 12th International Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, USA, 2010: 173–187. doi: 10.1007/978-3-642-15031-9_12.
    HE Jiaji, ZHAO Yiqiang, GUO Xiaolong, et al. Hardware Trojan detection through chip-free electromagnetic side-channel statistical analysis[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(10): 2939–2948. doi: 10.1109/TVLSI.2017.2727985
    NARASIMHAN S, DU Dongdong, CHAKRABORTY R S, et al. Multiple-parameter side-channel analysis: A non-invasive hardware Trojan detection approach[C]. 2010 IEEE International Symposium on Hardware-Oriented Security and Trust, Anaheim, USA, 2010: 13–18. doi: 10.1109/HST.2010.5513122.
    LIU Yu, JIN Yier, NOSRATINIA A, et al. Silicon demonstration of hardware Trojan design and detection in wireless cryptographic ICs[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(4): 1506–1519. doi: 10.1109/TVLSI.2016.2633348
    FORTE D, BAO Chongxi, and SRIVASTAVA A. Temperature tracking: An innovative run-time approach for hardware Trojan detection[C]. 2013 IEEE/ACM International Conference on Computer-Aided Design, San Jose, USA, 2013: 532–539. doi: 10.1109/ICCAD.2013.6691167.
    ZHAO Hong, KWIAT K, KAMHOUA C, et al. Applying chaos theory for runtime hardware Trojan detection[C]. 2015 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Verona, USA, 2015: 1–6. doi: 10.1109/CISDA.2015.7208642.
    JAP D, HE Wei, and BHASIN S. Supervised and unsupervised machine learning for side-channel based Trojan detection[C]. The 27th IEEE International Conference on Application-specific Systems, Architectures and Processors, London, UK, 2016: 17–24. doi: 10.1109/ASAP.2016.7760768.
    BAO Chongxi, FORTE D, and SRIVASTAVA A. On reverse engineering-based hardware Trojan detection[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2016, 35(1): 49–57. doi: 10.1109/TCAD.2015.2488495
    INOUE T, HASEGAWA K, YANAGISAWA M, et al. Designing hardware Trojans and their detection based on a SVM-based approach[C]. The 12th IEEE International Conference on ASIC, Guiyang, China, 2017: 811–814. doi: 10.1109/ASICON.2017.8252600.
    KULKARNI A, PINO Y, and MOHSENIN T. SVM-based real-time hardware Trojan detection for many-core platform[C]. 2016 17th International Symposium on Quality Electronic Design, Santa Clara, USA, 2016: 362–367. doi: 10.1109/ISQED.2016.7479228.
    LODHI F K, HASAN S R, HASAN O, et al. Power profiling of microcontroller′s instruction set for runtime hardware Trojans detection without golden circuit models[C]. The Design, Automation & Test in Europe Conference & Exhibition, Lausanne, Switzerland, 2017: 294–297. doi: 10.23919/DATE.2017.7927002.
    TEHRANIPOOR M and SALAMANI H. trust-HUB[OL]. https://www.trust-hub.org/, 2018.
    李瑩, 周崟灝, 陳嵐. 一種旁路檢測(cè)方法及裝置[P]. 中國(guó)專利, CN109684881A, 2019.

    LI Ying, ZHOU Yinhao, and CHEN Lan. A bypass detection method and device[P]. China patent, CN109684881A, 2019.
  • 加載中
圖(6) / 表(6)
計(jì)量
  • 文章訪問數(shù):  3727
  • HTML全文瀏覽量:  1833
  • PDF下載量:  93
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-15
  • 修回日期:  2020-03-06
  • 網(wǎng)絡(luò)出版日期:  2020-04-22
  • 刊出日期:  2020-07-23

目錄

    /

    返回文章
    返回