各向同性電離層低頻一跳天波時(shí)延特性研究
doi: 10.11999/JEIT190528 cstr: 32379.14.JEIT190528
-
1.
陜西科技大學(xué)電子信息與人工智能學(xué)院 西安 710021
-
2.
陜西科技大學(xué)電氣與控制工程學(xué)院 西安 710021
-
3.
空軍工程大學(xué)航空工程學(xué)院 西安 710038
-
4.
西安理工大學(xué)自動(dòng)化與信息工程學(xué)院 西安 710048
Study on Time Delay Characteristics of Low Frequency One-hop Sky Waves in the Isotropic Ionosphere
-
1.
School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an 710021, China
-
2.
School of Electrical and Control Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
-
3.
College of Aeronautics Engineering, Air Force Engineering University, Xi’an 710038, China
-
4.
School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
-
摘要:
低頻天波的準(zhǔn)確預(yù)測(cè)對(duì)于低電離層探測(cè)、遠(yuǎn)程導(dǎo)航授時(shí)具有重要意義。該文基于傳統(tǒng)“波跳”理論和FDTD方法對(duì)地-電離層波導(dǎo)中天波傳播時(shí)延特性進(jìn)行研究。結(jié)合天地波時(shí)域分離技術(shù),給出了100 kHz載頻羅蘭-C信號(hào)在均勻/指數(shù)漸變各向同性電離層條件下,距發(fā)射臺(tái)200 km范圍內(nèi)采用兩種方法計(jì)算的一跳天波時(shí)延隨收發(fā)距離的變化規(guī)律。與“波跳”理論相比,該方法可同時(shí)考慮地面不規(guī)則、電離層晝夜參數(shù)分布不均勻的影響,計(jì)算精度更高。
Abstract:Accurate prediction of low-frequency sky-wave has significance for the lower ionosphere detection and remote navigation timing. The characteristics of sky-wave propagation time delay in the Earth-ionosphere waveguide are studied in this paper based on the traditional wave-hop theory and FDTD method. Time delay variations of 100 kHz one-hop sky waves are given under homogeneous/exponentially graded isotropic ionosphere waveguide models. The great-circle distance between the transmitter and the receiver is within 200 km. Together with a sky- and ground-wave separation technique in the time domain, the narrow-band Loran-C signals are employed in two methods. Compared to the results of wave-hop theory, the method in this paper has higher calculation accuracy by considering the influence of irregular earth and inhomogeneous distribution of ionospheric day-night parameters at the same time.
-
Key words:
- Low-frequency wave /
- Wave-hop theory /
- One-hop sky wave /
- Time delay
-
WANG J C H. Seasonal variation of LF/MF sky-wave field strengths[J]. IEEE Transactions on Broadcasting, 2008, 54(3): 437–440. doi: 10.1109/TBC.2008.919390 PU Yurong, YANG Hongjuan, WANG Lili, et al. Analysis and modeling of temporal variation properties for LF ground-wave propagation delay[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 641–645. doi: 10.1109/LAWP.2019.2900271 于文啟, 陳建文, 李雪. 天波超視距雷達(dá)電離層相位污染時(shí)頻校正方法綜合性能評(píng)估[J]. 電子與信息學(xué)報(bào), 2018, 40(4): 992–1001. doi: 10.11999/JEIT170701YU Wenqi, CHEN Jianwen, and LI Xue. Comprehensive performance evaluation of ionosphere phase contamination time-frequency correction approaches in over-the-horizon radar[J]. Journal of Electronics &Information Technology, 2018, 40(4): 992–1001. doi: 10.11999/JEIT170701 WAKAI N, KURIHARA N, and OTSUKA A. Numerical method for calculating LF sky-wave, ground-wave and their resultant wave field strengths[J]. Electronics Letters, 2004, 40(5): 288–290. doi: 10.1049/el:20040207 CUMMER S A. Modeling electromagnetic propagation in the earth-ionosphere waveguide[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(9): 1420–1429. doi: 10.1109/8.898776 XU Honglei, GU Tingting, ZHENG Juan, et al. LF sky wave propagation excited by a horizontal electric dipole towards understanding of its radiation mechanism[J]. ACES Journal, 2018, 33(6): 657–664. 劉軍. 低頻時(shí)碼授時(shí)系統(tǒng)中的若干理論與工程設(shè)計(jì)實(shí)驗(yàn)研究[D]. [博士論文], 中國(guó)科學(xué)院研究生院(國(guó)家授時(shí)中心), 2002.LIU Jun. The theory and the technique of engineering on low-frequency time-code in time service system[D]. [Ph.D. dissertation], National Time Service Center Chinese Academy of Sciences, 2002. THèVENOT M, BéRENGER J P, MONEDIèRE T, et al. A FDTD scheme for the computation of VLF-LF propagation in the anisotropic earth-ionosphere waveguide[J]. Annales Des Télécommunications, 1999, 54(5/6): 297–310. doi: 10.1007/BF02995540 BéRENGER J P. FDTD computation of VLF-LF propagation in the earth-ionosphere waveguide[J]. Annales Des Télécommunications, 2002, 57(11/12): 1059–1090. doi: 10.1007/BF02999454 TEKBAS K, COSTEN F, BéRENGER J P, et al. Subcell modeling of frequency-dependent thin layers in the FDTD method[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 278–286. doi: 10.1109/TAP.2016.2628712 LI Yun, HUA Yu, YAN Baorong, et al. Experimental study on a modified method for propagation delay of long wave signal[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1716–1720. doi: 10.1109/LAWP.2019.2926734 ZHANG Kai, WAN Guobin, LI Minchao, et al. Skywave delay estimation in enhanced Loran based on extended invariance principle weighted fourier transform and relaxation algorithm[J]. IET Radar, Sonar & Navigation, 2019, 13(8): 1344–1349. doi: 10.1049/iet-rsn.2018.5651 SON P W, RHEE J H, and SEO J. Novel multichain-based Loran positioning algorithm for resilient navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 666–679. doi: 10.1109/TAES.2017.2762438 ZHOU Lili, XI Xiaoli, ZHANG Jinsheng, et al. A new method for Loran-C ASF calculation over irregular terrain[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1738–1744. doi: 10.1109/TAES.2013.6558016 QIN Zilong, CUMMER S A, CHEN Mingli, et al. A comparative study of the ray theory model with the finite difference time domain model for lightning sferic transmission in earth-ionosphere waveguide[J]. Journal of Geophysical Research, 2019, 124(6): 3335–3349. doi: 10.1029/2018JD029440 KISELEVA O, BRANDELIK A, HüBNER C, et al. A new far-field low-frequency electromagnetic method for measurement of temporal variations in subsurface electrical conductivity averaged over a transect[J]. Near Surface Geophysics, 2018, 16(5): 573–590. doi: 10.1002/nsg.12009 -