基于邊信息改進的分布式信源編碼方案
doi: 10.11999/JEIT190522 cstr: 32379.14.JEIT190522
-
云南大學(xué)信息學(xué)院電子工程系 昆明 650500
Distributed Source Coding Using Improved Side Information
-
School of Information Science and Engineering, Yunnan University, Kunming 650500, China
-
摘要:
針對現(xiàn)有的非對稱分布式信源編碼(DSC)方案均存在的在誤比特率(BER)以及壓縮率方面的不足,該文提出基于邊信息改進的DSC(DSCUISI)方案。發(fā)送方對信源序列進行抽樣,將序列分為抽樣與未抽樣子序列,利用算術(shù)編碼器對未抽樣子序列進行壓縮,同時計算抽樣子序列的伴隨式。接收方利用邊信息序列與未抽樣子序列之間的相關(guān)性,對抽樣符號進行估計,估計出的序列與原始抽樣子序列的相關(guān)性得到改進。最后利用原始抽樣子序列的伴隨式與估計出的序列進行聯(lián)合譯碼以重建原始抽樣子序列。實驗結(jié)果表明:與基于低密度奇偶校驗碼和算術(shù)碼的DSC方案相比,該文所提方案在信源內(nèi)部相關(guān)性較強時具有壓縮率高、在信源間相關(guān)度不高時則有重建錯誤率低的特點,是一種高效、實用且易于實現(xiàn)的DSC方案。
Abstract:Considering the shortcomings on the Bit Error Rate (BER) and the compression ratio of the existing asymmetric Distributed Source Coding (DSC) schemes, a scheme named Distributed Source Coding Using Improved Side Information (DSCUISI) is proposed. At the sender, the source sequence is sampled and divided into a sampled and an un-sampled sub-sequences. The un-sampled sub-sequence is compressed by arithmetic coder while the syndrome of the sampled sub-sequence is calculated. The receiver exploits the correlation between the side information and the un-sampled sub-sequence to estimate the sampled symbols, so that the correlation between the estimated sequence and the original sampled sub-sequence is improved. Finally, the syndromes and the estimated sequence are used to recover the sampled sub-sequence. Experiment results show that the DSCUISI can reach high compression ratio, when the correlation among neighboring symbols is strong. The BER of the reconstructed sequence can be kept low when the correlation between sources are weak. It is an efficient, practical DSC scheme and is easy to be implemented.
-
表 1 概率統(tǒng)計算法
輸入:X and Y Initialize count(00000)=1,…,count(11111)=1 Set i = 2 num=1 while (i<=N-1) do if (i+1 mod k) = 0 count(X[i-1] 0 Y[i-1] Y[i+1] Y[i])++ count(X[i-1] 1 Y[i-1] Y[i+1] Y[i])++ else if (i mod k) = 0 continue else if (i-1 mod k) = 0 count(0 X[i+1] Y[i-1] Y[i+1] Y[i])++ count(1 X[i+1] Y[i-1] Y[i+1] Y[i])++ else count(X[i-1] X[i+1] Y[i-1] Y[i+1] Y[i])++ end if end while for num<=32 calculating probability using count end for 輸出:probability distribution 下載: 導(dǎo)出CSV
表 2 壓縮率(碼率)對比結(jié)果
Peppers p=0.0775, H(X|Y)=0.3925 p=0.10759, H(X|Y)=0.4918 文獻[8]BER : LDPC=0.0193; ILDPC=0 文獻[8]BER : LDPC=0.1073; ILDPC=0.1158 文獻[11]: Rate=0.474487, BER=0.038486 文獻[11]: Rate=0.474487, BER=0.150906 C DSCUISI方案的碼率, k=3, k=4, k=6 0 0.700040 0.727850 0.754701 1 0.298285 0.274557 0.260146 3 0.217124 0.203460 0.216251 Lena p=0.076714, H(X|Y)=0.3808 p=0.098148, H(X|Y)=0.4516 文獻[8]BER : LDPC=0.0076; ILDPC=0 文獻[8]BER : LDPC=0.0919; ILDPC=0.0625 文獻[11]: Rate=0.547241, BER=0.004826 文獻[11]: Rate=0.547241, BER=0.043842 C DSCUISI方案的碼率,k=3, k=4, k=6 0 0.621454 0.61876 0.638811 1 0.282116 0.255748 0.238359 3 0.220430 0.201350 0.212461 Plane p=0.080215, H(X|Y)=0.3277 p=0.11145, H(X|Y)=0.4048 文獻[8]BER : LDPC=0.0290; ILDPC=0 文獻[8]BER : LDPC=0.1138; ILDPC=0.1238 文獻[11]: Rate=0.449249, BER=0.102680 文獻[11]: Rate=0.449249, BER=0.148754 C DSCUISI方案的碼率,k=3, k=4, k=6 0 0.576643 0.593650 0.608581 1 0.296949 0.279232 0.259157 3 0.208356 0.205500 0.210581 Boats p=0.076576, H(X|Y)=0.3644 p=0.101559, H(X|Y)=0.4403 文獻[8]BER : LDPC=0.0135; ILDPC=0 文獻[8]BER : LDPC=0.0972; ILDPC=0.0899 文獻[11]: Rate=0.488861, BER=0.073799 文獻[11]: Rate=0.488861, BER=0.145199 C DSCUISI方案的碼率,k=3, k=4, k=6 0 0.652294 0.678124 0.700619 1 0.345531 0.321238 0.306967 3 0.248442 0.246097 0.254241 Woman2 p=0.073326, H(X|Y)=0.3630 p=0.102539, H(X|Y)=0.4561 文獻[8]BER : LDPC=0.0029; ILDPC=0 文獻[8]BER : LDPC=0.0996; ILDPC=0.1006 文獻[11]: Rate=0.523987, BER=0.009167 文獻[11]: Rate=0.523987, BER=0.075237 C DSCUISI方案的碼率,k=3, k=4, k=6 0 0.582823 0.597651 0.608176 1 0.230468 0.202129 0.179202 3 0.174281 0.154635 0.150198 下載: 導(dǎo)出CSV
-
YANG Hong, QING Linbo, HE Xiaohai, et al. Robust distributed video coding for wireless multimedia sensor networks[J]. Multimedia Tools and Applications, 2018, 77(4): 4453–4475. doi: 10.1007/s11042-016-4245-x YANG Jia, QING Linbo, ZENG Wenjun, et al. High-order statistical modeling based on a decision tree for distributed video coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(5): 1488–1502. doi: 10.1109/TCSVT.2018.2840126 HAGAG A, FAN Xiaopeng, and EL-SAMIE F E A. Hyperspectral image coding and transmission scheme based on wavelet transform and distributed source coding[J]. Multimedia Tools and Applications, 2017, 76(22): 23757–23776. doi: 10.1007/s11042-016-4158-8 SLEPIAN D and WOLF J K. Noiseless coding of correlated information sources[J]. IEEE Transactions on Information Theory, 1973, 19(4): 471–480. doi: 10.1109/TIT.1973.1055037 洪少華, 王琳. 基于原模圖LDPC碼的分布式聯(lián)合信源信道編碼[J]. 電子與信息學(xué)報, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113HONG Shaohua and WANG Lin. Protograph LDPC based distributed joint source channel coding[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2594–2599. doi: 10.11999/JEIT170113 PRADHAN S S and RAMCHANDRAN K. Distributed Source Coding Using Syndromes (DISCUS): Design and construction[J]. IEEE Transactions on Information Theory, 2003, 49(3): 626–643. doi: 10.1109/TIT.2002.808103 GARCIA-FRIAS J. Compression of correlated binary sources using turbo codes[J]. IEEE Communications Letters, 2001, 5(10): 417–419. doi: 10.1109/4234.957380 LIVERIS A D, XIONG Zixiang, and GEORGHIADES C N. Compression of binary sources with side information at the decoder using LDPC codes[J]. IEEE Communications Letters, 2002, 6(10): 440–442. doi: 10.1109/LCOMM.2002.804244 JIN Liqiang, YANG Pei, and YANG Hongwen. Distributed joint source-channel decoding using systematic polar codes[J]. IEEE Communications Letters, 2018, 22(1): 49–52. doi: 10.1109/LCOMM.2017.2768036 GRANGETTO M, MAGLI E, and OLMO G. Distributed arithmetic coding[J]. IEEE Communications Letters, 2007, 11(11): 883–885. doi: 10.1109/LCOMM.2007.071172 GRANGETTO M, MAGLI E, and OLMO G. Distributed arithmetic coding for the Slepian-Wolf problem[J]. IEEE Transactions on Signal Processing, 2009, 57(6): 2245–2257. doi: 10.1109/TSP.2009.2014280 MALINOWSKI S, ARTIGAS X, GUILLEMOT C, et al. Distributed coding using punctured quasi-arithmetic codes for memory and memoryless sources[J]. IEEE Transactions on Signal Processing, 2009, 57(10): 4154–4158. doi: 10.1109/TSP.2009.2023359 CAO Ying, SUN Lijuan, HAN Chong, et al. Improved side information generation algorithm based on naive Bayesian theory for distributed video coding[J]. IET Image Processing, 2018, 12(3): 354–360. doi: 10.1049/iet-ipr.2017.0892 DASH B, RUP S, MOHAPATRA A, et al. Decoder driven side information generation using ensemble of MLP networks for distributed video coding[J]. Multimedia Tools and Applications, 2018, 77(12): 15221–15250. doi: 10.1007/s11042-017-5103-1 VARODAYAN D, LIN Y C, GIROD B, et al. Adaptive distributed source coding[J]. IEEE Transactions on Image Processing, 2012, 21(5): 2630–2640. doi: 10.1109/TIP.2011.2175936 羅瑜, 張珍珍. 一種方向插值預(yù)測變長編碼的幀存有損壓縮算法[J]. 電子與信息學(xué)報, 2019, 41(10): 2495–2500. doi: 10.11999/JEIT181195LUO Yu and ZHANG Zhenzhen. A lossy frame memory compression algorithm using directional interpolation prediction variable length coding[J]. Journal of Electronics &Information Technology, 2019, 41(10): 2495–2500. doi: 10.11999/JEIT181195 WEISSMAN T, ORDENTLICH E, SEROUSSI G, et al. Universal discrete denoising: Known channel[J]. IEEE Transactions on Information Theory, 2005, 51(1): 5–28. doi: 10.1109/TIT.2004.839518 -