一種變體BISON分組密碼算法及分析
doi: 10.11999/JEIT190517 cstr: 32379.14.JEIT190517
-
1.
桂林電子科技大學(xué)認(rèn)知無線電與信息處理省部共建教育部重點(diǎn)實(shí)驗(yàn)室 桂林 541004
-
2.
桂林電子科技大學(xué)廣西密碼學(xué)與信息安全重點(diǎn)實(shí)驗(yàn)室 桂林 541004
-
3.
桂林電子科技大學(xué)數(shù)學(xué)與計(jì)算科學(xué)學(xué)院 桂林 541004
A Variant BISON Block Cipher Algorithm and Its Analysis
-
1.
Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education, Guilin University of Electronic Technology, Guilin 541004, China
-
2.
Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin 541004, China
-
3.
School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin 541004, China
-
摘要:
該文基于Whitened Swap?or?Not(WSN)的結(jié)構(gòu)特點(diǎn),分析了Canteaut 等人提出的Bent whItened Swap Or Not –like (BISON-like) 算法的最大期望差分概率值(MEDP)及其(使用平衡函數(shù)時(shí))抵御線性密碼分析的能力;針對(duì)BISON算法迭代輪數(shù)異常高(一般為3n輪,n為數(shù)據(jù)分組長(zhǎng)度)且密鑰信息的異或操作由不平衡Bent函數(shù)決定的情況,該文采用了一類較小絕對(duì)值指標(biāo)、高非線性度、較高代數(shù)次數(shù)的平衡布爾函數(shù)替換BISON算法中的Bent函數(shù),評(píng)估了新變體BISON算法抵御差分密碼分析和線性密碼分析的能力。研究結(jié)果表明:新的變體BISON算法僅需迭代n輪;當(dāng)n較大時(shí)(如n=128或256),其抵御差分攻擊和線性攻擊的能力均接近理想值。且其密鑰信息的異或操作由平衡函數(shù)來決定,故具有更好的算法局部平衡性。
-
關(guān)鍵詞:
- 差分密碼分析 /
- 線性密碼分析 /
- WSN結(jié)構(gòu) /
- BISON-like分組密碼算法 /
- 變體BISON分組密碼算法
Abstract:Based on the characteristics of Whitened Swap?or?Not (WSN) construction, the maximum expected differential probability (MEDP) of Bent whItened Swap Or Not -like (BISON-like) algorithm proposed by Canteaut et al. is analyzed in this paper. In particular, the ability of BISON-like algorithm with balanced nonlinear components against linear cryptanalysis is also investigated. Notice that the number of iteration rounds of BISON algorithm is rather high (It needs usually to iterate 3n rounds, n is the block length of data) and Bent function (unbalanced) is directly used to XOR with the secret key bits. In order to overcome these shortcomings, a kind of balanced Boolean functions that has small absolute value indicator, high nonlinearity and high algebraic degree is selected to replace the Bent functions used in BISON algorithm. Moreover, the abilities of this new variant BISON algorithm against both the differential cryptanalysis and the linear cryptanalysis are estimated. It is shown that the new variant BISON algorithm only needs to iterate n-round function operations; If n is relative large (e.g. n=128 or n=256), Its abilities against both the differential cryptanalysis and the linear cryptanalysis almost achieve ideal value. Furthermore, due to the balanced function is directly XORed with the secret key bits of the variant algorithm, it attains a better local balance indeed.
-
表 1
${\rm{MED}}{{\rm{P}}_{{\text{變體}}{\rm{BISON}}}}$ ,${{\rm{MEDP}} _{{\rm{BISON}} }}$ 與${\rm{MED}}{{\rm{P}}_{\text{理想值}}}$ 的對(duì)比$n$ $17$ $33$ $65$ $129$ ${{\rm{MEDP}} _{{\rm{BISON}} }} = {2^{{\rm{ - }}\left( {n - 1} \right)}}$ $ = {2^{ - 16}}$ $ = {2^{ - 32}}$ $ = {2^{ - 64}}$ $ = {2^{ - 128}}$ ${\rm{MED}}{{\rm{P}}_{{\simfont\text{變體}}{\rm{BISON}}}} = {\left( {1/2 + {2^{ - \left( {n - 3} \right)}}} \right)^{n - 1}}$ $ \approx {2^{ - 15.9972}}$ $ \approx {2^{ - 32}}$ $ \approx {2^{ - 64}}$ $ \approx {2^{ - 128}}$ ${\rm{MED}}{{\rm{P}}_{\simfont\text{理想值}}}$$ = {\left( {{2^n} - 1} \right)^{ - 1}}$ $ \approx {2^{ - 17}}$ $ \approx {2^{ - 33}}$ $ \approx {2^{ - 65}}$ $ \approx {2^{ - 129}}$ 下載: 導(dǎo)出CSV
表 2
$r$ 輪($r \ge n$ )變體BISON算法與BISON算法綜合安全性能對(duì)比算 法 迭代
輪數(shù)${\rm{MEDP}}$ ${\rm{MELP}}$ 局部平
衡性BISON算法 $3n$ ${2^{ - \left( {n - 1} \right)}}$ ${2^{ - \left( {n - 1} \right)}}$ 否 變體BISON算法 $n$ ${2^{ - \left( {n - 1} \right)} }{\left( {1 + \dfrac{1}{ { {2^{n - 4} } } }} \right)^n}$ ${2^{ - \left( {n - 2} \right)}}$ 是 下載: 導(dǎo)出CSV
-
National Institute of Standards and Technology (NIST). FIPS PUB 197 Advanced encryption standard (AES)[S]. U.S. Department of Commerce, 2001. DAEMEN J and RIJMEN V. The wide trail design strategy[C]. The 8th IMA International Conference on Cryptography and Coding, Cirencester, UK, 2001: 222–238. doi: 10.1007/3-540-45325-3_20. DAEMEN J and RIJMEN V. The Design of Rijndael: AES-The Advanced Encryption Standard. Information Security and Cryptography[M]. Berlin Heidelberg: Springer, 2002: 35–79. doi: 10.1007/978-3-662-04722-4. EVEN S and MANSOUR Y. A construction of a cipher from a single pseudorandom permutation[J]. Journal of Cryptology, 1997, 10(3): 151–161. doi: 10.1007/s001459900025 CHEN Shan, LAMPE R, LEE J, et al. Minimizing the two-round EVEN-MANSOUR cipher[J]. Journal of Cryptology, 2018, 31(4): 1064–1119. doi: 10.1007/s00145-018-9295-y CHEN Shan and STEINBERGER J. Tight security bounds for key-alternating ciphers[C]. The 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, 2014: 327–350. doi: 10.1007/978-3-642-55220-5_19. GRASSI L, RECHBERGER C, and R?NJOM S. Subspace trail cryptanalysis and its applications to AES[J]. IACR Transactions on Symmetric Cryptology, 2016, 2016(2): 192–225. doi: 10.13154/tosc.v2016.i2.192-225 GRASSI L, RECHBERGER C, and R?NJOM S. A new structural-differential property of 5-Round AES[C]. The 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, 2017: 289–317. doi: 10.1007/978-3-319-56614-6_10. TESSARO S. Optimally secure block ciphers from ideal primitives[C]. The 21st International Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, 2015: 437–462. doi: 10.1007/978-3-662-48800-3_18. HOANG V T, MORRIS B, and ROGAWAY P. An enciphering scheme based on a card shuffle[C]. The 32nd Annual Cryptology Conference, Santa Barbara, US, 2012: 1–13. doi: 10.1007/978-3-642-32009-5_1. VAUDENAY S. The end of encryption based on card shuffling[EB/OL]. https://crypto.2012.rump.cr.yp.to/9f3046f7f8235f99aabca5d4ad7946b2.pdf, 2012. CANTEAUT A, LALLEMAND V, LEANDER G, et al. BISON instantiating the Whitened Swap-Or-Not construction[C]. The 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, 2019: 585–616. doi: 10.1007/978-3-030-17659-4_20. CUSICK T W and ST?NIC? P. Cryptographic Boolean Functions and Applications[M]. Amsterdam: Elsevier, 2009: 7–16. ZHANG Xianmo and ZHENG Yuliang. GAC — the Criterion for Global Avalanche Characteristics of Cryptographic Functions[M]. MAURER H, CALUDE C, and SALOMAA A. J.UCS the Journal of Universal Computer Science. Berlin, Heidelberg: Springer, 1996: 320–337. doi: 10.1007/978-3-642-80350-5_30. ZHOU Yu, ZHANG Weiguo, LI Juan, et al. The autocorrelation distribution of balanced Boolean function[J]. Frontiers of Computer Science, 2013, 7(2): 272–278. doi: 10.1007/s11704-013-2013-x 李超, 孫兵, 李瑞林. 分組密碼的攻擊方法與實(shí)例分析[M]. 北京: 科學(xué)出版社, 2010: 64–116.LI Chao, SUN Bing, and LI Ruilin. Attack Methods and Case Analysis of Block Cipher[M]. Beijing: Science Press, 2010: 64–116. KRANZ T, LEANDER G, and WIEMER F. Linear cryptanalysis: Key schedules and tweakable block ciphers[J]. IACR Transactions on Symmetric Cryptology, 2017(1): 474–505. -
計(jì)量
- 文章訪問數(shù): 3028
- HTML全文瀏覽量: 1002
- PDF下載量: 71
- 被引次數(shù): 0