一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

一種變體BISON分組密碼算法及分析

趙海霞 韋永壯 劉爭(zhēng)紅

趙海霞, 韋永壯, 劉爭(zhēng)紅. 一種變體BISON分組密碼算法及分析[J]. 電子與信息學(xué)報(bào), 2020, 42(7): 1796-1802. doi: 10.11999/JEIT190517
引用本文: 趙海霞, 韋永壯, 劉爭(zhēng)紅. 一種變體BISON分組密碼算法及分析[J]. 電子與信息學(xué)報(bào), 2020, 42(7): 1796-1802. doi: 10.11999/JEIT190517
Haixia ZHAO, Yongzhuang WEI, Zhenghong LIU. A Variant BISON Block Cipher Algorithm and Its Analysis[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1796-1802. doi: 10.11999/JEIT190517
Citation: Haixia ZHAO, Yongzhuang WEI, Zhenghong LIU. A Variant BISON Block Cipher Algorithm and Its Analysis[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1796-1802. doi: 10.11999/JEIT190517

一種變體BISON分組密碼算法及分析

doi: 10.11999/JEIT190517 cstr: 32379.14.JEIT190517
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61572148, 61872103),廣西科技計(jì)劃項(xiàng)目基金(桂科AB18281019),廣西自然科學(xué)基金(2017GXNSFBA198056),認(rèn)知無線電與信息處理省部共建教育部重點(diǎn)實(shí)驗(yàn)室主任基金(CRKL180107),廣西密碼學(xué)與信息安全重點(diǎn)實(shí)驗(yàn)室基金(GCIS201706)
詳細(xì)信息
    作者簡(jiǎn)介:

    趙海霞:女,1981年生,博士生,研究方向?yàn)槊艽a函數(shù)、分組密碼分析

    韋永壯:男,1976年生,教授,博士生導(dǎo)師,研究方向?yàn)槊艽a函數(shù)、分組密碼分析

    劉爭(zhēng)紅:男,1979年生,高級(jí)實(shí)驗(yàn)師,碩士生導(dǎo)師,研究方向?yàn)橥ㄐ判畔踩?/p>

    通訊作者:

    韋永壯 walker_wyz@guet.edu.cn

  • 中圖分類號(hào): TN918.2; TP309

A Variant BISON Block Cipher Algorithm and Its Analysis

Funds: The National Natural Science Foundation of China (61572148, 61872103), The Foundation of Guangxi Science and Technology Program (Guike AB18281019). The Natural Science Foundation of Guangxi (2017GXNSFBA198056), The Foundation of Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology) (CRKL180107), The Foundation of Guangxi Key Laboratory of Cryptography and Information Security (GCIS201706)
  • 摘要:

    該文基于Whitened Swap?or?Not(WSN)的結(jié)構(gòu)特點(diǎn),分析了Canteaut 等人提出的Bent whItened Swap Or Not –like (BISON-like) 算法的最大期望差分概率值(MEDP)及其(使用平衡函數(shù)時(shí))抵御線性密碼分析的能力;針對(duì)BISON算法迭代輪數(shù)異常高(一般為3n輪,n為數(shù)據(jù)分組長(zhǎng)度)且密鑰信息的異或操作由不平衡Bent函數(shù)決定的情況,該文采用了一類較小絕對(duì)值指標(biāo)、高非線性度、較高代數(shù)次數(shù)的平衡布爾函數(shù)替換BISON算法中的Bent函數(shù),評(píng)估了新變體BISON算法抵御差分密碼分析和線性密碼分析的能力。研究結(jié)果表明:新的變體BISON算法僅需迭代n輪;當(dāng)n較大時(shí)(如n=128或256),其抵御差分攻擊和線性攻擊的能力均接近理想值。且其密鑰信息的異或操作由平衡函數(shù)來決定,故具有更好的算法局部平衡性。

  • 表  1  ${\rm{MED}}{{\rm{P}}_{{\text{變體}}{\rm{BISON}}}}$, ${{\rm{MEDP}} _{{\rm{BISON}} }}$${\rm{MED}}{{\rm{P}}_{\text{理想值}}}$的對(duì)比

    $n$$17$$33$$65$$129$
    ${{\rm{MEDP}} _{{\rm{BISON}} }} = {2^{{\rm{ - }}\left( {n - 1} \right)}}$$ = {2^{ - 16}}$$ = {2^{ - 32}}$$ = {2^{ - 64}}$$ = {2^{ - 128}}$
    ${\rm{MED}}{{\rm{P}}_{{\simfont\text{變體}}{\rm{BISON}}}} = {\left( {1/2 + {2^{ - \left( {n - 3} \right)}}} \right)^{n - 1}}$$ \approx {2^{ - 15.9972}}$$ \approx {2^{ - 32}}$$ \approx {2^{ - 64}}$$ \approx {2^{ - 128}}$
    ${\rm{MED}}{{\rm{P}}_{\simfont\text{理想值}}}$$ = {\left( {{2^n} - 1} \right)^{ - 1}}$$ \approx {2^{ - 17}}$$ \approx {2^{ - 33}}$$ \approx {2^{ - 65}}$$ \approx {2^{ - 129}}$
    下載: 導(dǎo)出CSV

    表  2  $r$輪($r \ge n$)變體BISON算法與BISON算法綜合安全性能對(duì)比

    算 法迭代
    輪數(shù)
    ${\rm{MEDP}}$${\rm{MELP}}$局部平
    衡性
    BISON算法$3n$${2^{ - \left( {n - 1} \right)}}$${2^{ - \left( {n - 1} \right)}}$
    變體BISON算法$n$${2^{ - \left( {n - 1} \right)} }{\left( {1 + \dfrac{1}{ { {2^{n - 4} } } }} \right)^n}$${2^{ - \left( {n - 2} \right)}}$
    下載: 導(dǎo)出CSV
  • National Institute of Standards and Technology (NIST). FIPS PUB 197 Advanced encryption standard (AES)[S]. U.S. Department of Commerce, 2001.
    DAEMEN J and RIJMEN V. The wide trail design strategy[C]. The 8th IMA International Conference on Cryptography and Coding, Cirencester, UK, 2001: 222–238. doi: 10.1007/3-540-45325-3_20.
    DAEMEN J and RIJMEN V. The Design of Rijndael: AES-The Advanced Encryption Standard. Information Security and Cryptography[M]. Berlin Heidelberg: Springer, 2002: 35–79. doi: 10.1007/978-3-662-04722-4.
    EVEN S and MANSOUR Y. A construction of a cipher from a single pseudorandom permutation[J]. Journal of Cryptology, 1997, 10(3): 151–161. doi: 10.1007/s001459900025
    CHEN Shan, LAMPE R, LEE J, et al. Minimizing the two-round EVEN-MANSOUR cipher[J]. Journal of Cryptology, 2018, 31(4): 1064–1119. doi: 10.1007/s00145-018-9295-y
    CHEN Shan and STEINBERGER J. Tight security bounds for key-alternating ciphers[C]. The 33rd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark, 2014: 327–350. doi: 10.1007/978-3-642-55220-5_19.
    GRASSI L, RECHBERGER C, and R?NJOM S. Subspace trail cryptanalysis and its applications to AES[J]. IACR Transactions on Symmetric Cryptology, 2016, 2016(2): 192–225. doi: 10.13154/tosc.v2016.i2.192-225
    GRASSI L, RECHBERGER C, and R?NJOM S. A new structural-differential property of 5-Round AES[C]. The 36th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, 2017: 289–317. doi: 10.1007/978-3-319-56614-6_10.
    TESSARO S. Optimally secure block ciphers from ideal primitives[C]. The 21st International Conference on the Theory and Application of Cryptology and Information Security, Auckland, New Zealand, 2015: 437–462. doi: 10.1007/978-3-662-48800-3_18.
    HOANG V T, MORRIS B, and ROGAWAY P. An enciphering scheme based on a card shuffle[C]. The 32nd Annual Cryptology Conference, Santa Barbara, US, 2012: 1–13. doi: 10.1007/978-3-642-32009-5_1.
    VAUDENAY S. The end of encryption based on card shuffling[EB/OL]. https://crypto.2012.rump.cr.yp.to/9f3046f7f8235f99aabca5d4ad7946b2.pdf, 2012.
    CANTEAUT A, LALLEMAND V, LEANDER G, et al. BISON instantiating the Whitened Swap-Or-Not construction[C]. The 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, 2019: 585–616. doi: 10.1007/978-3-030-17659-4_20.
    CUSICK T W and ST?NIC? P. Cryptographic Boolean Functions and Applications[M]. Amsterdam: Elsevier, 2009: 7–16.
    ZHANG Xianmo and ZHENG Yuliang. GAC — the Criterion for Global Avalanche Characteristics of Cryptographic Functions[M]. MAURER H, CALUDE C, and SALOMAA A. J.UCS the Journal of Universal Computer Science. Berlin, Heidelberg: Springer, 1996: 320–337. doi: 10.1007/978-3-642-80350-5_30.
    ZHOU Yu, ZHANG Weiguo, LI Juan, et al. The autocorrelation distribution of balanced Boolean function[J]. Frontiers of Computer Science, 2013, 7(2): 272–278. doi: 10.1007/s11704-013-2013-x
    李超, 孫兵, 李瑞林. 分組密碼的攻擊方法與實(shí)例分析[M]. 北京: 科學(xué)出版社, 2010: 64–116.

    LI Chao, SUN Bing, and LI Ruilin. Attack Methods and Case Analysis of Block Cipher[M]. Beijing: Science Press, 2010: 64–116.
    KRANZ T, LEANDER G, and WIEMER F. Linear cryptanalysis: Key schedules and tweakable block ciphers[J]. IACR Transactions on Symmetric Cryptology, 2017(1): 474–505.
  • 加載中
表(2)
計(jì)量
  • 文章訪問數(shù):  3028
  • HTML全文瀏覽量:  1002
  • PDF下載量:  71
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-10
  • 修回日期:  2020-03-08
  • 網(wǎng)絡(luò)出版日期:  2020-03-20
  • 刊出日期:  2020-07-23

目錄

    /

    返回文章
    返回