一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言?xún)?nèi)容
驗(yàn)證碼

基于壓縮感知高反光成像技術(shù)研究

范劍英 馬明陽(yáng) 趙首博

范劍英, 馬明陽(yáng), 趙首博. 基于壓縮感知高反光成像技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512
引用本文: 范劍英, 馬明陽(yáng), 趙首博. 基于壓縮感知高反光成像技術(shù)研究[J]. 電子與信息學(xué)報(bào), 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512
Jianying FAN, Mingyang MA, Shoubo ZHAO. Research on High Reflective Imaging Technology Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512
Citation: Jianying FAN, Mingyang MA, Shoubo ZHAO. Research on High Reflective Imaging Technology Based on Compressed Sensing[J]. Journal of Electronics & Information Technology, 2020, 42(4): 1013-1020. doi: 10.11999/JEIT190512

基于壓縮感知高反光成像技術(shù)研究

doi: 10.11999/JEIT190512 cstr: 32379.14.JEIT190512
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61801148, 61803128),黑龍江省自然科學(xué)基金(QC2016067)
詳細(xì)信息
    作者簡(jiǎn)介:

    范劍英:男,1963年生,教授,碩士生導(dǎo)師,研究方向?yàn)楣怆姍z測(cè)、數(shù)字圖像與重建

    馬明陽(yáng):男,1993年生,碩士生,研究方向?yàn)閴嚎s感知與數(shù)字信號(hào)處理

    趙首博:男,1985年生,副教授,碩士生導(dǎo)師,研究方向?yàn)榫芄怆姕y(cè)量、計(jì)算視覺(jué)成像

    通訊作者:

    趙首博 shoubozh@126.com

  • 中圖分類(lèi)號(hào): TN911.73; TN957.52

Research on High Reflective Imaging Technology Based on Compressed Sensing

Funds: The National Natural Science Foundation of China (61801148, 61803128), The Scientific Research Foundation of Heilongjiang Province (QC2016067)
  • 摘要:

    高反光物體成像時(shí)反射的光強(qiáng)容易超出傳感器接收光強(qiáng)的最大量化值,使得采集圖像部分區(qū)域圖像失真,嚴(yán)重影響信息傳遞。為了改善高反光成像飽和區(qū)域中數(shù)據(jù)丟失的狀況,該文結(jié)合壓縮感知這一新的采樣理論提出基于壓縮感知高反光成像方法,利用特定測(cè)量矩陣對(duì)目標(biāo)圖像進(jìn)行線(xiàn)性采樣,將CCD圖像傳感器的單個(gè)光強(qiáng)采樣值與測(cè)量矩陣中的分布數(shù)據(jù)對(duì)應(yīng)結(jié)合,對(duì)整合后的數(shù)據(jù)用算法進(jìn)行恢復(fù)重建實(shí)現(xiàn)被測(cè)目標(biāo)在高光環(huán)境中成像。以峰值信噪比和灰度直方圖作為客觀(guān)評(píng)定標(biāo)準(zhǔn)。實(shí)驗(yàn)表明,該成像方法魯棒性較強(qiáng)、可行性較高,直方圖檢測(cè)飽和像素占比為0%,峰值信噪比為58.37 dB實(shí)現(xiàn)了在高光環(huán)境下不含飽和光成像,為壓縮感知在成像應(yīng)用中提供了新的方向。

  • 圖  1  壓縮感知框架圖

    圖  2  不同環(huán)境下成像狀態(tài)

    圖  3  圖像分塊

    圖  4  CCD所采集含高反光圖像

    圖  5  去除成像中高亮區(qū)域效果

    圖  6  壓縮感知不同恢復(fù)算法去除飽和光成像

    圖  7  壓縮感知去飽和光成像光路圖

    圖  8  高亮光環(huán)境下采集的被測(cè)目標(biāo)信息

    圖  9  原始圖像和壓縮感知高反光成像直方圖

    表  1  不同采樣率下兩種恢復(fù)算法的MSE值與PSNR值

    CS采樣率OMP算法SAMP算法
    MSEPSNRMSEPSNR
    0.300.015866.14810.016665.9403
    0.350.015066.37390.015466.2512
    0.400.014366.56250.014266.6061
    0.450.013966.71490.013566.8149
    0.500.013666.79280.013366.9078
    下載: 導(dǎo)出CSV
  • 趙首博, 曲興華, 馮維, 等. 成像前光學(xué)調(diào)制系統(tǒng)的眩光測(cè)量[J]. 光電工程, 2016, 43(1): 13–17. doi: 10.3969/j.issn.1003-501X.2016.01.003

    ZHAO Shoubo, QU Xinghua, FENG Wei, et al. A measurement method for glare based on the Optical modulation system before image formation[J]. Opto-Electronic Engineering, 2016, 43(1): 13–17. doi: 10.3969/j.issn.1003-501X.2016.01.003
    范劍英, 劉力源, 趙首博. 電機(jī)銅排表面毛刺缺陷檢測(cè)技術(shù)研究[J]. 儀器儀表學(xué)報(bào), 2019, 40(3): 14–22. doi: 10.19650/j.cnki.cjsi.J1804559

    FAN Jianying, LIU Liyuan, and ZHAO Shoubo. Research on detection technology of burr defects in motor copper[J]. Chinese Journal of Scientific Instrument, 2019, 40(3): 14–22. doi: 10.19650/j.cnki.cjsi.J1804559
    ZHAO Shoubo, MA Mingyang, and GUO Cong. Accurate Pixel-to-Pixel alignment method with Six-Axis adjustment for computational photography[J]. IEEE Photonics Journal, 2018, 10(3): 6802416. doi: 10.1109/jphot.2018.2839093
    JIANG Hongzhi, ZHAO Huijie, and LI Xudong. High dynamic range fringe acquisition: A novel 3-D scanning technique for high-reflective surfaces[J]. Optics and Lasers in Engineering, 2012, 50(10): 1484–1493. doi: 10.1016/j.optlaseng.2011.11.021
    ZHAO Shoubo, ZHANG Fumin, QU Xinghua, et al. Removal of parasitic image due to metal specularity based on digital micromirror device camera[J]. Optical Engineering, 2014, 53(6): 063105. doi: 10.1117/1.oe.53.6.063105
    YAN Qingsen, ZHU Yu, and ZHANG Yanning. Robust artifact-free high dynamic range imaging of dynamic scenes[J]. Multimedia Tools and Applications, 2019, 78(9): 11487–11505. doi: 10.1007/s11042-018-6625-x
    KALANTARI N K, SHECHTMAN E, BARNES C, et al. Patch-based high dynamic range video[J]. ACM Transactions on Graphics, 2013, 32(6): No. 202. doi: 10.1145/2508363.2508402
    ZHAO Shoubo, LIU Liyuan, and MA Mingyang. Adaptive high-dynamic range three-dimensional shape measurement using DMD camera[J]. IEEE Access, 2019, 7: 67934–67943. doi: 10.1109/access.2019.2918843
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    ELDAR Y C, KUTYNIOK G. Compressed Sensing: Theory and Applications[M]. Cambridge: Cambridge University Press, 2012: 1289–1306. doi: 10.1017/CBO9780511794308.
    CANDES E J, ROMBERG J, and TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509. doi: 10.1109/TIT.2005.862083
    RISTOBAL-HUERTA A, POOT D H J, VOGEL M W, et al. Compressed sensing 3D-GRASE for faster high-resolution MRI[J]. Magnetic Resonance in Medicine, 2019, 82(3): 984–999. doi: 10.1002/mrm.27789
    ZHU Xiaoxiang and BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based tomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. doi: 10.1109/MSP.2014.2312098
    王偉, 胡子英, 龔琳舒. MIMO雷達(dá)三維成像自適應(yīng)Off-grid校正方法[J]. 電子與信息學(xué)報(bào), 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145

    WANG Wei, HU Ziying, and GONG Linshu. Adaptive off-grid calibration method for MIMO radar 3D imaging[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1294–1301. doi: 10.11999/JEIT180145
    金艷, 周磊, 姬紅兵. 基于稀疏時(shí)頻分布的跳頻信號(hào)參數(shù)估計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 40(3): 663–669. doi: 10.11999/JEIT170525

    JIN Yan, ZHOU Lei, and JI Hongbing. Parameter estimation of frequency-hopping signals based on sparse time-frequency distribution[J]. Journal of Electronics &Information Technology, 2018, 40(3): 663–669. doi: 10.11999/JEIT170525
    FAZEL F, FAZEL M, and STOJANOVIC M. Random access compressed sensing for energy-efficient underwater sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(8): 1660–1670. doi: 10.1109/jsac.2011.110915
    孫玉寶, 李歡, 吳敏, 等. 基于圖稀疏正則化多測(cè)量向量模型的高光譜壓縮感知重建[J]. 電子與信息學(xué)報(bào), 2014, 36(12): 2942–2948. doi: 10.3724/SP.J.1146.2014.00566

    SUN Yubao, LI Huan, WU Min, et al. Compressed sensing reconstruction of hyperspectral image using the graph sparsity regularized multiple measurement vector model[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2942–2948. doi: 10.3724/SP.J.1146.2014.00566
    LIAO Wenchao, HSIEH J, WANG Chengming, et al. Compressed sensing spectral domain optical coherence tomography with a hardware sparse-sampled camera[J]. Optics Letters, 2019, 44(12): 2955–2958. doi: 10.1364/OL.44.002955
    DUARTE M F, DAVENPORT M A, TAKHAR D, et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 83–91. doi: 10.1109/msp.2007.914730
    余慧敏, 方廣有. 壓縮感知理論在探地雷達(dá)三維成像中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2010, 32(1): 12–16. doi: 10.3724/SP.J.1146.2009.00040

    YU Huimin and FANG Guangyou. Research on compressive sensing based 3D imaging method applied to ground penetrating radar[J]. Journal of Electronics &Information Technology, 2010, 32(1): 12–16. doi: 10.3724/SP.J.1146.2009.00040
    莊佳衍, 陳錢(qián), 何偉基, 等. 基于壓縮感知的動(dòng)態(tài)散射成像[J]. 物理學(xué)報(bào), 2016, 65(4): 040501. doi: 10.7498/aps.65.040501

    ZHUANG Jiayan, CHEN Qian, HE Weiji, et al. Imaging through dynamic scattering media with compressed sensing[J]. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    LI Bo, LIU Falin, ZHOU Chongbin, et al. Mixed sparse representation for approximated observation-based compressed sensing radar imaging[J]. Journal of Applied Remote Sensing, 2018, 12(3): 035015. doi: 10.1117/1.JRS.12.035015
    LI Yunhui, WANG Xiaodong, WANG Zhi, et al. Modeling and image motion analysis of parallel complementary compressive sensing imaging system[J]. Optics Communications, 2018, 423: 100–110. doi: 10.1016/j.optcom.2018.04.018
  • 加載中
圖(9) / 表(1)
計(jì)量
  • 文章訪(fǎng)問(wèn)數(shù):  2618
  • HTML全文瀏覽量:  1047
  • PDF下載量:  64
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-09
  • 修回日期:  2020-01-17
  • 網(wǎng)絡(luò)出版日期:  2020-02-17
  • 刊出日期:  2020-06-04

目錄

    /

    返回文章
    返回