一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

多編隊(duì)目標(biāo)先后出現(xiàn)時(shí)的無先驗(yàn)信息跟蹤方法

熊偉 顧祥岐 徐從安 崔亞奇

熊偉, 顧祥岐, 徐從安, 崔亞奇. 多編隊(duì)目標(biāo)先后出現(xiàn)時(shí)的無先驗(yàn)信息跟蹤方法[J]. 電子與信息學(xué)報(bào), 2020, 42(7): 1619-1626. doi: 10.11999/JEIT190508
引用本文: 熊偉, 顧祥岐, 徐從安, 崔亞奇. 多編隊(duì)目標(biāo)先后出現(xiàn)時(shí)的無先驗(yàn)信息跟蹤方法[J]. 電子與信息學(xué)報(bào), 2020, 42(7): 1619-1626. doi: 10.11999/JEIT190508
Wei XIONG, Xiangqi GU, Congan XU, Yaqi CUI. Tracking Method without Prior Information when Multi-group Targets Appear Successively[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1619-1626. doi: 10.11999/JEIT190508
Citation: Wei XIONG, Xiangqi GU, Congan XU, Yaqi CUI. Tracking Method without Prior Information when Multi-group Targets Appear Successively[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1619-1626. doi: 10.11999/JEIT190508

多編隊(duì)目標(biāo)先后出現(xiàn)時(shí)的無先驗(yàn)信息跟蹤方法

doi: 10.11999/JEIT190508 cstr: 32379.14.JEIT190508
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(91538201, 61790550)
詳細(xì)信息
    作者簡(jiǎn)介:

    熊偉:男,1978年生,教授,博士生導(dǎo)師,研究方向?yàn)槎鄠鞲衅餍畔⑷诤?/p>

    顧祥岐:男,1995年生,碩士,研究方向?yàn)樾畔⑷诤稀⒗走_(dá)數(shù)據(jù)處理

    徐從安:男,1987年生,講師,研究方向?yàn)樾畔⑷诤?、大?shù)據(jù)技術(shù)

    崔亞奇:男,1987年生,講師,研究方向?yàn)樯疃葘W(xué)習(xí)、多傳感器信息融合

    通訊作者:

    顧祥岐 guxiangqi1314@163.com

  • 中圖分類號(hào): TN953

Tracking Method without Prior Information when Multi-group Targets Appear Successively

Funds: The National Natural Science Foundation of China (91538201, 61790550)
  • 摘要:

    針對(duì)多編隊(duì)機(jī)動(dòng)目標(biāo)先后出現(xiàn)時(shí)的跟蹤問題,該文提出了一種基于交互式多模型高斯混合概率假設(shè)密度濾波(IMM-GM-PHD)算法的無先驗(yàn)信息跟蹤方法。首先,在IMM-GM-PHD算法預(yù)測(cè)過程完成的基礎(chǔ)上,引入密度檢測(cè)機(jī)制,利用相關(guān)域?yàn)樗蓄A(yù)測(cè)高斯分量挑選有效量測(cè),結(jié)合密度聚類(DBSCAN)算法檢測(cè)是否出現(xiàn)新編隊(duì)目標(biāo)。其次,在IMM-GM-PHD算法狀態(tài)更新完成的基礎(chǔ)上,利用更新高斯分量的組成情況完成模型概率的更新。最后,在狀態(tài)估計(jì)優(yōu)化過程中,結(jié)合編隊(duì)目標(biāo)的特點(diǎn),加入相似度判別技術(shù),利用杰森-香農(nóng)(JS)散度度量高斯分量間的相似度,剔除沒有相似分量的高斯分量,進(jìn)一步優(yōu)化估計(jì)結(jié)果。仿真結(jié)果表明,該文方法能夠快速有效地跟蹤非同時(shí)出現(xiàn)的多編隊(duì)機(jī)動(dòng)目標(biāo),具有較好的跟蹤性能。

  • 圖  1  流程圖

    圖  2  真實(shí)運(yùn)動(dòng)軌跡和量測(cè)數(shù)據(jù)

    圖  3  IMM-GM-PHD算法單次仿真的狀態(tài)估計(jì)

    圖  4  本文算法單次仿真的狀態(tài)估計(jì)

    圖  5  IMM-GM-PHD算法的目標(biāo)個(gè)數(shù)估計(jì)

    圖  6  本文算法的目標(biāo)個(gè)數(shù)估計(jì)

    圖  7  OSPA距離比較

    圖  8  IMM-GM-PHD算法的目標(biāo)個(gè)數(shù)估計(jì)(λ=1)

    圖  9  本文算法的目標(biāo)個(gè)數(shù)估計(jì)(λ=1)

    圖  10  IMM-GM-PHD算法的目標(biāo)個(gè)數(shù)估計(jì)(λ=50)

    圖  11  本文算法的目標(biāo)個(gè)數(shù)估計(jì)(λ=50)

    圖  12  真實(shí)運(yùn)動(dòng)軌跡和量測(cè)數(shù)據(jù)

    圖  13  本文算法單次仿真的狀態(tài)估計(jì)

    圖  14  本文算法的目標(biāo)個(gè)數(shù)估計(jì)

    表  1  不同雜波密度下平均OSPA距離比較

    算法雜波密度
    ${\rm{\lambda }} = 1$${\rm{\lambda }} = 10$${\rm{\lambda }} = 50$
    IMM-GM-PHD算法29.75532.12944.609
    本文算法21.82128.61743.996
    下載: 導(dǎo)出CSV
  • YU Yihua. Consensus-based distributed linear filter for target tracking with uncertain noise statistics[J]. IEEE Sensors Journal, 2017, 17(15): 4875–4885. doi: 10.1109/JSEN.2017.2712702
    但波, 姜永華, 李敬軍, 等. 基于空時(shí)融合隱馬爾科夫模型的艦艇編隊(duì)目標(biāo)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 926–932. doi: 10.11999/JEIT140589

    DAN Bo, JIANG Yonghua, LI Jingju, et al. Ship formation target recognition based on spatial and temporal fusion hidden markov model[J]. Journal of Electronics &Information Technology, 2015, 37(4): 926–932. doi: 10.11999/JEIT140589
    FELDMANN M, FR?NKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi: 10.1109/tsp.2010.2101064
    LAN Jian and LI X R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2450–2463. doi: 10.1109/tsp.2014.2309561
    王婷婷, 繆禮鋒, 程然. 海上低空突防群目標(biāo)跟蹤的IMM-Bayesian實(shí)現(xiàn)[J]. 海軍航空工程學(xué)院學(xué)報(bào), 2018, 33(1): 111–118. doi: 10.7682/j.issn.1673-1522.2018.01.003

    WANG Tingting, MIAO Lifeng, and CHENG Ran. IMM-bayesian tracking algorithm for the sea surface low-altitude penetration group targets[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(1): 111–118. doi: 10.7682/j.issn.1673-1522.2018.01.003
    何友, 修建娟, 關(guān)欣, 等. 雷達(dá)數(shù)據(jù)處理及應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2013: 191–201.

    HE You, XIU Jianjuan, GUAN Xin, et al. Radar Data Processing with Applications[M]. Beijing: Publishing House of Electronics Industry, 2013: 191–201.
    王聰, 王海鵬, 何友, 等. 基于ICP的穩(wěn)態(tài)部分可辨編隊(duì)目標(biāo)精細(xì)跟蹤算法[J]. 北京航空航天大學(xué)學(xué)報(bào), 2017, 43(6): 1123–1131. doi: 10.13700/j.bh.1001-5965.2016.0421

    WANG Cong, WANG Haipeng, HE You, et al. Refined tracking algorithm for steady partly resolvable group targets based on ICP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1123–1131. doi: 10.13700/j.bh.1001-5965.2016.0421
    WANG Haipeng, SUN Weiwei, JIA Shuyi, et al. A group target track correlation algorithm based on systematic error estimation[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–8. doi: 10.1109/RADAR.2016.8059386.
    MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119
    VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/tsp.2006.881190
    VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1225. doi: 10.1109/taes.2005.1561884
    朱友清, 周石琳, 高貴. 結(jié)合聚類的GM-PHD濾波器輻射源群目標(biāo)跟蹤[J]. 系統(tǒng)工程與電子技術(shù), 2015, 37(9): 1967–1973. doi: 10.3969/j.issn.1001-506X.2015.09.03

    ZHU Youqing, ZHOU Shilin, and GAO Gui. Emitter group targets tracking using GM-PHD filter combined with clustering[J]. Systems Engineering and Electronics, 2015, 37(9): 1967–1973. doi: 10.3969/j.issn.1001-506X.2015.09.03
    WOOD T M. Interacting methods for manoeuvre handling in the GM-PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3021–3025. doi: 10.1109/TAES.2011.6034685
    WANG Yun, HU Guoping, and LI Zhenxing. Tracking of group targets using multiple models GGIW-PHD algorithm based on best-fitting Gaussian approximation and strong tracking filter[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 331–343. doi: 10.1177/0954410016684359
    GRANSTROM K and ORGUNER U. On spawning and combination of extended/group targets modeled with random matrices[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 678–692. doi: 10.1109/tsp.2012.2230171
    朱書軍, 劉偉峰, 崔海龍. 基于廣義標(biāo)簽多伯努利濾波的可分辨群目標(biāo)跟蹤算法[J]. 自動(dòng)化學(xué)報(bào), 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334

    ZHU Shujun, LIU Weifeng, and CUI Hailong. Multiple resolvable groups tracking using the GLMB filter[J]. Acta Automatica Sinica, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334
    SAEEDI EMADI H and MAZINANI S M. A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks[J]. Wireless Personal Communications, 2018, 98(2): 2025–2035. doi: 10.1007/s11277-017-4961-1
    LIN J. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145–151. doi: 10.1109/18.61115
    VAN ERVEN T and HARREMOS P. Rényi divergence and Kullback-Leibler divergence[J]. IEEE Transactions on Information Theory, 2014, 60(7): 3797–3820. doi: 10.1109/TIT.2014.2320500
    SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/tsp.2008.920469
  • 加載中
圖(14) / 表(1)
計(jì)量
  • 文章訪問數(shù):  3716
  • HTML全文瀏覽量:  1053
  • PDF下載量:  74
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-07-08
  • 修回日期:  2020-03-22
  • 網(wǎng)絡(luò)出版日期:  2020-04-09
  • 刊出日期:  2020-07-23

目錄

    /

    返回文章
    返回