多編隊(duì)目標(biāo)先后出現(xiàn)時(shí)的無先驗(yàn)信息跟蹤方法
doi: 10.11999/JEIT190508 cstr: 32379.14.JEIT190508
-
海軍航空大學(xué)信息融合研究所 煙臺(tái) 264001
Tracking Method without Prior Information when Multi-group Targets Appear Successively
-
Institute of Information Fusion, Naval Aeronautical University, Yantai 264001, China
-
摘要:
針對(duì)多編隊(duì)機(jī)動(dòng)目標(biāo)先后出現(xiàn)時(shí)的跟蹤問題,該文提出了一種基于交互式多模型高斯混合概率假設(shè)密度濾波(IMM-GM-PHD)算法的無先驗(yàn)信息跟蹤方法。首先,在IMM-GM-PHD算法預(yù)測(cè)過程完成的基礎(chǔ)上,引入密度檢測(cè)機(jī)制,利用相關(guān)域?yàn)樗蓄A(yù)測(cè)高斯分量挑選有效量測(cè),結(jié)合密度聚類(DBSCAN)算法檢測(cè)是否出現(xiàn)新編隊(duì)目標(biāo)。其次,在IMM-GM-PHD算法狀態(tài)更新完成的基礎(chǔ)上,利用更新高斯分量的組成情況完成模型概率的更新。最后,在狀態(tài)估計(jì)優(yōu)化過程中,結(jié)合編隊(duì)目標(biāo)的特點(diǎn),加入相似度判別技術(shù),利用杰森-香農(nóng)(JS)散度度量高斯分量間的相似度,剔除沒有相似分量的高斯分量,進(jìn)一步優(yōu)化估計(jì)結(jié)果。仿真結(jié)果表明,該文方法能夠快速有效地跟蹤非同時(shí)出現(xiàn)的多編隊(duì)機(jī)動(dòng)目標(biāo),具有較好的跟蹤性能。
-
關(guān)鍵詞:
- 多編隊(duì)機(jī)動(dòng)目標(biāo) /
- 交互式多模型高斯混合概率假設(shè)密度濾波算法 /
- 相關(guān)域 /
- 密度聚類算法 /
- 杰森-香農(nóng)散度
Abstract:Considering the problem of multi-group maneuvering target tracking, a fast tracking method based on Interactive Multiple Maneuvering Gaussian Mixture Probability Hypothesis Density (IMM-GM-PHD) algorithm is proposed. Firstly, based on the completion of the IMM-GM-PHD algorithm prediction process, the density detection mechanism is added, and the correlation domain is used to select effective measurement for all predicted Gaussian components, and the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is combined to detect whether a new formation target appears. Secondly, based on the completion of the state update of the IMM-GM-PHD algorithm, the update of the model probability is completed by updating the composition of the Gaussian component. Finally, in the process of state estimation optimization, combined with the characteristics of formation targets, the similarity discrimination technique is added, and the Jensen-Shannon (JS) divergence is used to measure the similarity between Gaussian components, and the Gaussian components without similar components are eliminated, and the estimation results are further optimized. The simulation results show that the proposed algorithm can track multi-group maneuvering targets quickly and effectively, and has better tracking performance.
-
表 1 不同雜波密度下平均OSPA距離比較
算法 雜波密度 ${\rm{\lambda }} = 1$ ${\rm{\lambda }} = 10$ ${\rm{\lambda }} = 50$ IMM-GM-PHD算法 29.755 32.129 44.609 本文算法 21.821 28.617 43.996 下載: 導(dǎo)出CSV
-
YU Yihua. Consensus-based distributed linear filter for target tracking with uncertain noise statistics[J]. IEEE Sensors Journal, 2017, 17(15): 4875–4885. doi: 10.1109/JSEN.2017.2712702 但波, 姜永華, 李敬軍, 等. 基于空時(shí)融合隱馬爾科夫模型的艦艇編隊(duì)目標(biāo)識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2015, 37(4): 926–932. doi: 10.11999/JEIT140589DAN Bo, JIANG Yonghua, LI Jingju, et al. Ship formation target recognition based on spatial and temporal fusion hidden markov model[J]. Journal of Electronics &Information Technology, 2015, 37(4): 926–932. doi: 10.11999/JEIT140589 FELDMANN M, FR?NKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi: 10.1109/tsp.2010.2101064 LAN Jian and LI X R. Tracking of maneuvering non-ellipsoidal extended object or target group using random matrix[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2450–2463. doi: 10.1109/tsp.2014.2309561 王婷婷, 繆禮鋒, 程然. 海上低空突防群目標(biāo)跟蹤的IMM-Bayesian實(shí)現(xiàn)[J]. 海軍航空工程學(xué)院學(xué)報(bào), 2018, 33(1): 111–118. doi: 10.7682/j.issn.1673-1522.2018.01.003WANG Tingting, MIAO Lifeng, and CHENG Ran. IMM-bayesian tracking algorithm for the sea surface low-altitude penetration group targets[J]. Journal of Naval Aeronautical and Astronautical University, 2018, 33(1): 111–118. doi: 10.7682/j.issn.1673-1522.2018.01.003 何友, 修建娟, 關(guān)欣, 等. 雷達(dá)數(shù)據(jù)處理及應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2013: 191–201.HE You, XIU Jianjuan, GUAN Xin, et al. Radar Data Processing with Applications[M]. Beijing: Publishing House of Electronics Industry, 2013: 191–201. 王聰, 王海鵬, 何友, 等. 基于ICP的穩(wěn)態(tài)部分可辨編隊(duì)目標(biāo)精細(xì)跟蹤算法[J]. 北京航空航天大學(xué)學(xué)報(bào), 2017, 43(6): 1123–1131. doi: 10.13700/j.bh.1001-5965.2016.0421WANG Cong, WANG Haipeng, HE You, et al. Refined tracking algorithm for steady partly resolvable group targets based on ICP[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1123–1131. doi: 10.13700/j.bh.1001-5965.2016.0421 WANG Haipeng, SUN Weiwei, JIA Shuyi, et al. A group target track correlation algorithm based on systematic error estimation[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–8. doi: 10.1109/RADAR.2016.8059386. MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119 VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/tsp.2006.881190 VO B N, SINGH S, and DOUCET A. Sequential Monte Carlo methods for multitarget filtering with random finite sets[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224–1225. doi: 10.1109/taes.2005.1561884 朱友清, 周石琳, 高貴. 結(jié)合聚類的GM-PHD濾波器輻射源群目標(biāo)跟蹤[J]. 系統(tǒng)工程與電子技術(shù), 2015, 37(9): 1967–1973. doi: 10.3969/j.issn.1001-506X.2015.09.03ZHU Youqing, ZHOU Shilin, and GAO Gui. Emitter group targets tracking using GM-PHD filter combined with clustering[J]. Systems Engineering and Electronics, 2015, 37(9): 1967–1973. doi: 10.3969/j.issn.1001-506X.2015.09.03 WOOD T M. Interacting methods for manoeuvre handling in the GM-PHD filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 3021–3025. doi: 10.1109/TAES.2011.6034685 WANG Yun, HU Guoping, and LI Zhenxing. Tracking of group targets using multiple models GGIW-PHD algorithm based on best-fitting Gaussian approximation and strong tracking filter[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 331–343. doi: 10.1177/0954410016684359 GRANSTROM K and ORGUNER U. On spawning and combination of extended/group targets modeled with random matrices[J]. IEEE Transactions on Signal Processing, 2013, 61(3): 678–692. doi: 10.1109/tsp.2012.2230171 朱書軍, 劉偉峰, 崔海龍. 基于廣義標(biāo)簽多伯努利濾波的可分辨群目標(biāo)跟蹤算法[J]. 自動(dòng)化學(xué)報(bào), 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334ZHU Shujun, LIU Weifeng, and CUI Hailong. Multiple resolvable groups tracking using the GLMB filter[J]. Acta Automatica Sinica, 2017, 43(12): 2178–2189. doi: 10.16383/j.aas.2017.c160334 SAEEDI EMADI H and MAZINANI S M. A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks[J]. Wireless Personal Communications, 2018, 98(2): 2025–2035. doi: 10.1007/s11277-017-4961-1 LIN J. Divergence measures based on the Shannon entropy[J]. IEEE Transactions on Information Theory, 1991, 37(1): 145–151. doi: 10.1109/18.61115 VAN ERVEN T and HARREMOS P. Rényi divergence and Kullback-Leibler divergence[J]. IEEE Transactions on Information Theory, 2014, 60(7): 3797–3820. doi: 10.1109/TIT.2014.2320500 SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/tsp.2008.920469 -