一種基于正則優(yōu)化的批次繼承極限學習機算法
doi: 10.11999/JEIT190502 cstr: 32379.14.JEIT190502
-
1.
燕山大學電氣工程學院 秦皇島 066004
-
2.
燕山大學信息科學與工程學院 秦皇島 066004
A Batch Inheritance Extreme Learning Machine Algorithm Based on Regular Optimization
-
1.
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
-
2.
School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
-
摘要:
極限學習機(ELM)作為一種新型神經網(wǎng)絡,具有極快的訓練速度和良好的泛化性能。針對極限學習機在處理高維數(shù)據(jù)時計算復雜度高,內存需求巨大的問題,該文提出一種批次繼承極限學習機(B-ELM)算法。首先將數(shù)據(jù)集均分為不同批次,采用自動編碼器網(wǎng)絡對各批次數(shù)據(jù)進行降維處理;其次引入繼承因子,建立相鄰批次之間的關系,同時結合正則化框架構建拉格朗日優(yōu)化函數(shù),實現(xiàn)批次極限學習機數(shù)學建模;最后利用MNIST, NORB和CIFAR-10數(shù)據(jù)集進行測試實驗。實驗結果表明,所提算法具有較高的分類精度,并且有效降低了計算復雜度和內存消耗。
-
關鍵詞:
- 極限學習機 /
- 高維數(shù)據(jù) /
- 批次學習 /
- 繼承因子 /
- 正則化
Abstract:As a new type of neural network, Extreme Learning Machine (ELM) has extremely fast training speed and good generalization performance. Considering the problem that the Extreme Learning Machine has high computational complexity and huge memory demand when dealing with high dimensional data, a Batch inheritance Extreme Learning Machine (B-ELM) algorithm is proposed. Firstly, the dataset is divided into different batches, and the automatic encoder network is used to reduce the dimension of each batch. Secondly, the inheritance factor is introduced to establish the relationship between adjacent batches. At the same time, the Lagrange optimization function is constructed by combining the regularization framework to realize the mathematical modeling of batch ELM. Finally, the MNIST, NORB and CIFAR-10 datasets are used for the test experiment. The experimental results show that the proposed algorithm not only has higher classification accuracy, but also reduces effectively computational complexity and memory consumption.
-
表 1 不同數(shù)據(jù)集上的性能比較
分類方法 MNIST NORB CIFAR-10 精度(%) 訓練時間(s) 精度(%) 訓練時間(s) 精度(%) 訓練時間(s) SAE 98.60 4042.36 86.28 6438.56 43.37 60514.26 SDA 98.72 3892.26 87.62 6572.14 43.61 87289.59 DBM 99.05 14505.14 89.65 18496.64 43.12 90123.53 ML-ELM 98.21 51.83 88.91 78.36 45.42 74.06 H-ELM 99.12 28.97 91.28 42.74 50.21 62.76 B-ELM 99.43 42.67 91.90 55.96 50.38 69.06 下載: 導出CSV
-
HUANG Guangbin, ZHU Qinyu, and SIEW C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1/3): 489–501. doi: 10.1016/j.neucom.2005.12.126 李佩佳, 石勇, 汪華東, 等. 基于有序編碼的核極限學習順序回歸模型[J]. 電子與信息學報, 2018, 40(6): 1287–1293. doi: 10.11999/JEIT170765LI Peijia, SHI Yong, WANG Huadong, et al. Ordered code-based kernel extreme learning machine for ordinal regression[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1287–1293. doi: 10.11999/JEIT170765 HUANG Guangbin, ZHOU Hongming, DING Xiaojian, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 2012, 42(2): 513–529. doi: 10.1109/tsmcb.2011.2168604 WANG Yongchang and ZHU Ligu. Research and implementation of SVD in machine learning[C]. The 2017 16th IEEE/ACIS International Conference on Computer and Information Science, Wuhan, China, 2017: 471–475. doi: 10.1109/ICIS.2017.7960038. CASTA?O A, FERNáNDEZ-NAVARRO F, and HERVáS-MARTíNEZ C. PCA-ELM: A robust and pruned extreme learning machine approach based on principal component analysis[J]. Neural Processing Letters, 2013, 37(3): 377–392. doi: 10.1007/s11063-012-9253-x ZONG Weiwei, HUANG Guangbin, and CHEN Yiqiang. Weighted extreme learning machine for imbalance learning[J]. Neurocomputing, 2013, 101: 229–242. doi: 10.1016/j.neucom.2012.08.010 ZHAO Rui and MAO Kezhi. Semi-random projection for dimensionality reduction and extreme learning machine in high-dimensional space[J]. IEEE Computational Intelligence Magazine, 2015, 10(3): 30–41. doi: 10.1109/MCI.2015.2437316 LUO Xiong, XU Yang, WANG Weiping, et al. Towards enhancing stacked extreme learning machine with sparse autoencoder by correntropy[J]. Journal of the Franklin Institute, 2018, 355(4): 1945–1966. doi: 10.1016/j.jfranklin.2017.08.014 WU Shuang, LI Guoqi, DENG Lei, et al. L1-norm batch normalization for efficient training of deep neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7): 2043–2051. doi: 10.1109/TNNLS.2018.2876179 LI Yanghao, WANG Naiyan, SHI Jianping, et al. Adaptive batch normalization for practical domain adaptation[J]. Pattern Recognition, 2018, 80: 109–117. doi: 10.1016/j.patcog.2018.03.005 LIANG Nanying, HUANG Guangbin, SARATCHANDRAN P, et al. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411–1423. doi: 10.1109/TNN.2006.880583 HUANG Guangbin. What are extreme learning machines? Filling the gap between frank Rosenblatt’s dream and john von Neumann’s puzzle[J]. Cognitive Computation, 2015, 7(3): 263–278. doi: 10.1007/s12559-015-9333-0 YI Yugen, QIAO Shaojie, ZHOU Wei, et al. Adaptive multiple graph regularized semi-supervised extreme learning machine[J]. Soft Computing, 2018, 22(11): 3545–3562. doi: 10.1007/s00500-018-3109-x CHENG Kai and LU Zhenzhou. Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression[J]. Computers & Structures, 2018, 194: 86–96. doi: 10.1016/j.compstruc.2017.09.002 HINTON G E and SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504–507. doi: 10.1126/science.1127647 VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]. The 25th International Conference on Machine Learning, Helsinki, Finland, 2008: 1096–1103. doi: 10.1145/1390156.1390294. SALAKHUTDINOV R and HINTON G. An efficient learning procedure for deep Boltzmann machines[J]. Neural Computation, 2012, 24(8): 1967–2006. doi: 10.1162/NECO_a_00311 CAMBRIA E, HUANG Guangbin, KASUN L L C, et al. Extreme learning machines[trends & controversies][J]. IEEE Intelligent Systems, 2013, 28(6): 30–59. doi: 10.1109/MIS.2013.140 TANG Jiexiong, DENG Chenwei, and HUANG Guangbin. Extreme learning machine for multilayer perceptron[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(4): 809–821. doi: 10.1109/TNNLS.2015.2424995 -