基于多尺度生成對抗網(wǎng)絡(luò)的運動散焦紅外圖像復(fù)原
doi: 10.11999/JEIT190495 cstr: 32379.14.JEIT190495
-
1.
成都理工大學(xué)信息科學(xué)與技術(shù)學(xué)院 成都 610051
-
2.
電子科技大學(xué)電子科學(xué)與工程學(xué)院 成都 610054
Motion Defocus Infrared Image Restoration Based on Multi Scale Generative Adversarial Network
-
1.
College of Information Science and Technology, Chengdu Universitly of Technology, Chengdu 610051, China
-
2.
College of Electronic Science and Engineering, University of Electronic Science and Technology, Chengdu 610054, China
-
摘要:
紅外熱成像系統(tǒng)在夜間實施目標(biāo)識別與檢測優(yōu)勢明顯,而移動平臺上動態(tài)環(huán)境所導(dǎo)致的運動散焦模糊影響上述成像系統(tǒng)的應(yīng)用。該文針對上述問題,基于生成對抗網(wǎng)絡(luò)開展運動散焦后紅外圖像復(fù)原方法研究,采用生成對抗網(wǎng)絡(luò)抑制紅外圖像的運動散焦模糊,提出一種針對紅外圖像的多尺度生成對抗網(wǎng)絡(luò)(IMdeblurGAN)在高效抑制紅外圖像運動散焦模糊的同時保持紅外圖像細(xì)節(jié)對比度,提升移動平臺上夜間目標(biāo)的檢測與識別能力。實驗結(jié)果表明:該方法相對已有最優(yōu)模糊圖像復(fù)原方法,圖像峰值信噪比(PSNR)提升5%,圖像結(jié)構(gòu)相似性(SSIMx)提升4%,目標(biāo)識別YOLO置信度評分提升6%。
-
關(guān)鍵詞:
- 紅外熱成像系統(tǒng) /
- 運動散焦模糊 /
- 多尺度生成對抗網(wǎng)絡(luò) /
- 紅外圖像復(fù)原 /
- 夜間目標(biāo)識別
Abstract:Infrared thermal imaging system has obvious advantages in target recognition and detection at night, and the motion defocus blur caused by dynamic environment on mobile platform affects the application of the above imaging system. In order to solve the above problems, based on the research of infrared image restoration method after motion defocusing using generating confrontation network, a Infrared thermal image Multi scale deblurGenerative Adversarial Network (IMdeblurGAN) is proposed to suppress motion defocusing blurring effectively while preserving the image by using generating confrontation network to suppress the motion defocusing blurring of infrared image to hold the contrast of infrared image details, to improve the detection and recognition ability of night targets on motion platform. The experimental results show that compared with the existing optimal restoration methods for blurred images, Peak Signal to Noise Ratio (PSNR) of the image is increased by 5%, the Structure SIMilarity (SSIM) is increased by 4%, and the confidence score of YOLO for target recognition is increased by 6%.
-
表 1 復(fù)原性能對比分析
復(fù)原方法 平均峰值信噪比 (dB) 平均結(jié)構(gòu)相似性 Wiener 21.3 0.62 LR 22.5 0.65 DeblurGAN 27.0 0.75 SRN-DeblurNet 30.5 0.88 本文IMdeblurGAN 32.0 0.92 下載: 導(dǎo)出CSV
表 2 YOLO V3置信度對比分析
原始圖像 運動散焦圖像 Wiener逆濾波 LR迭代去卷積 DeblurGAN SRN-DeblurNet 本文IMdeblurGAN YOLOV3 評分 0.97 不能識別 不能識別 不能識別 0.77 0.89 0.95 下載: 導(dǎo)出CSV
-
崔美玉. 論紅外熱像儀的應(yīng)用領(lǐng)域及技術(shù)特點[J]. 中國安防, 2014(12): 90–93. doi: 10.3969/j.issn.1673-7873.2014.12.026CUI Meiyu. On the application field and technical characteristics of infrared thermal imager[J]. China Security &Protection, 2014(12): 90–93. doi: 10.3969/j.issn.1673-7873.2014.12.026 KUPYN O, BUDZAN V, MYKHAILYCH M, et al. DeblurGAN: Blind motion deblurring using conditional adversarial networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8183–8192. TAO Xin, GAO Hongyun, SHEN Xiaoyong, et al. Scale-recurrent network for deep image deblurring[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8174–8182. HE Zewei, CAO Yanpeng, DONG Yafei, et al. Single-image-based nonuniformity correction of uncooled long-wave infrared detectors: A deep-learning approach[J]. Applied Optics, 2018, 57(18): D155–D164. doi: 10.1364/AO.57.00D155 邵保泰, 湯心溢, 金璐, 等. 基于生成對抗網(wǎng)絡(luò)的單幀紅外圖像超分辨算法[J]. 紅外與毫米波學(xué)報, 2018, 37(4): 427–432. doi: 10.11972/j.issn.1001-9014.2018.04.009SHAO Baotai, TANG Xinyi, JIN Lu, et al. Single frame infrared image super-resolution algorithm based on generative adversarial nets[J]. Journal of Infrared and Millimeter Wave, 2018, 37(4): 427–432. doi: 10.11972/j.issn.1001-9014.2018.04.009 劉鵬飛, 趙懷慈, 曹飛道. 多尺度卷積神經(jīng)網(wǎng)絡(luò)的噪聲模糊圖像盲復(fù)原[J]. 紅外與激光工程, 2019, 48(4): 0426001. doi: 10.3788/IRLA201948.0426001LIU Pengfei, ZHAO Huaici, and CAO Feidao. Blind deblurring of noisy and blurry images of multi-scale convolutional neural network[J]. Infrared and Laser Engineering, 2019, 48(4): 0426001. doi: 10.3788/IRLA201948.0426001 BOUSMALIS K, SILBERMAN N, DOHAN D, et al. Unsupervised pixel-level domain adaptation with generative adversarial networks[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 95–104. 李凌霄, 馮華君, 趙巨峰, 等. 紅外焦平面陣列的盲元自適應(yīng)快速校正[J]. 光學(xué)精密工程, 2017, 25(4): 1009–1018. doi: 10.3788/OPE.20172504.1009LI Lingxiao, FENG Huajun, ZHAO Jufeng, et al. Adaptive and fast blind pixel correction of IRFPA[J]. Optics and Precision Engineering, 2017, 25(4): 1009–1018. doi: 10.3788/OPE.20172504.1009 DONG Chao, LOY C, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 184–199. EFRAT N, GLASNER D, APARTSIN A, et al. Accurate blur models vs. image priors in single image super-resolution[C]. The 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2832–2839. HE Anfeng, LUO Chong, TIAN Xinmei, et al. A twofold Siamese network for real-time object tracking[C]. The 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4834–4843. LIN Zhouchen and SHUM H Y. Fundamental limits of reconstruction-based superresolution algorithms under local translation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 83–97. doi: 10.1109/TPAMI.2004.1261081 楊陽, 楊靜宇. 基于顯著性分割的紅外行人檢測[J]. 南京理工大學(xué)學(xué)報, 2013, 37(2): 251–256.YANG Yang and YANG Jingyu. Infrared pedestrian detection based on saliency segmentation[J]. Journal of Nanjing University of Science and Technology, 2013, 37(2): 251–256. PINNEGAR C R and MANSINHA L. Time-local spectral analysis for non-stationary time series: The S-transform for noisy signals[J]. Fluctuation and Noise Letters, 2003, 3(3): L357–L364. doi: 10.1142/S0219477503001439 CAO Yanpeng and TISSE C L. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera[J]. Optics Letters, 2014, 39(3): 646–648. doi: 10.1364/OL.39.000646 REAL E, SHLENS J, MAZZOCCHI S, et al. YouTube-boundingboxes: A large high-precision human-annotated data set for object detection in video[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 7464–7473. WU Yi, LIM J, and YANG M H. Online object tracking: A benchmark[C]. The 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411–2418. doi: 10.1109/CVPR.2013.312. WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861 KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182. KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90. doi: 10.1145/3065386 -