基于多源雷達(dá)遙感技術(shù)的黃河徑流反演研究
doi: 10.11999/JEIT190494 cstr: 32379.14.JEIT190494
-
1.
河南大學(xué)河南省智能技術(shù)與應(yīng)用工程技術(shù)研究中心 開(kāi)封 475004
-
2.
河南大學(xué)河南省大數(shù)據(jù)分析與處理重點(diǎn)實(shí)驗(yàn)室 開(kāi)封 475004
-
3.
河南大學(xué)信息化管理辦公室 開(kāi)封 475004
-
4.
河南大學(xué)計(jì)算機(jī)與信息工程學(xué)院 開(kāi)封 475004
Inversion of Yellow River Runoff Based on Multi-source Radar Remote Sensing Technology
-
1.
Henan Engineering Research Center of Intelligent Technology and Application, Henan University, Kaifeng 475004, China
-
2.
Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng 475004, China
-
3.
Network Information Center Office, Henan University, Kaifeng 475004, China
-
4.
College of Computer and Information Engineering, Henan University, Kaifeng 475004, China
-
摘要:
黃河是我國(guó)華北地區(qū)重要的水資源,采用雷達(dá)遙感方式對(duì)其徑流進(jìn)行監(jiān)測(cè)可以便捷地反映出黃河的旱澇變化趨勢(shì),具有重要的現(xiàn)實(shí)意義。目前,雷達(dá)遙感徑流反演常用雷達(dá)高度計(jì)(RA)獲取水位信息用以構(gòu)建水深-徑流模型,這種方法忽略了河面變化對(duì)徑流波動(dòng)的影響,具有一定的局限性。該文提出一種基于多源雷達(dá)遙感技術(shù)的徑流計(jì)算模型(MRRS-RCM),綜合應(yīng)用RA測(cè)高技術(shù)與合成孔徑雷達(dá)(SAR)信息提取技術(shù),以曼寧公式為基礎(chǔ),構(gòu)建MRRS-RCM模型實(shí)現(xiàn)徑流反演。該文選取黃河下游3個(gè)研究站點(diǎn)進(jìn)行徑流反演實(shí)驗(yàn),結(jié)果證明MRRS-RCM模型徑流反演結(jié)果的相對(duì)均方根誤差(RRMSE)達(dá)到13.969%,優(yōu)于傳統(tǒng)徑流監(jiān)測(cè)15%~20%的精度要求。
-
關(guān)鍵詞:
- 合成孔徑雷達(dá) /
- 徑流計(jì)算模型 /
- 雷達(dá)高度計(jì) /
- 關(guān)系擬合 /
- 黃河
Abstract:The Yellow River is an important water resource in China. Using radar remote sensing to monitor the runoff of the Yellow River can conveniently reflect the changing trend of drought and flood, which has important practical significance. At present, Radar Altimeter (RA) commonly is used to construct a water depth-runoff model in runoff inversion. This method ignores the influence of river surface change on runoff fluctuation and has certain limitations. A Multi-source Radar Remote Sensing Runoff Calculation Model (MRRS-RCM) is proposed. In this study, RA technology and Synthetic Aperture Radar (SAR) technology are used to construct MRRS-RCM model on the basis of the Manning’s equation to realize runoff inversion. Three stations are selected for experiments in the lower reaches of the Yellow River. The results show that the Relative Root Mean Square Error (RRMSE) of MRRS-RCM runoff inversion reaches 13.969%, which is better than the accuracy requirement of traditional runoff monitoring of 15%~20%.
-
表 1 研究站點(diǎn)空間信息表
站點(diǎn) 地理坐標(biāo) 所屬河段 水文站距離(km) A 113.667, 34.915 花園口 2.9 B 114.764, 34.893 夾河灘 2.2 C 115.158, 35.419 高村 9.5 下載: 導(dǎo)出CSV
表 2 RA數(shù)據(jù)信息表
站點(diǎn) 數(shù)據(jù)名稱(chēng) 重訪周期(d) 衛(wèi)星軌道 波段 最小目標(biāo)寬度(m) 數(shù)據(jù)級(jí)別 數(shù)據(jù)來(lái)源 A Sentinel-3A 27 095 Ku 300 Level-2 ESA B Jason-3 10 164 Ku 500 Level-2 CNES C Jason-3 10 001 Ku 500 Level-2 CNES 下載: 導(dǎo)出CSV
表 3 遙感數(shù)據(jù)時(shí)間表
數(shù)據(jù)名稱(chēng) 數(shù)據(jù)類(lèi)型 建模數(shù)據(jù)時(shí)間 測(cè)試數(shù)據(jù)時(shí)間 Sentinel-3A RA 2017.01-2018.12 2019.01-2019.08 Jason-3 RA 2018.01-2018.12 2019.01-2019.08 Sentinel-1A SAR 2018.01-2018.12 2019.01-2019.08 下載: 導(dǎo)出CSV
表 4 水位提取結(jié)果精度評(píng)價(jià)表
站點(diǎn) R-square RMSE(m) RRMSE(%) A 0.9474 0.1639 0.182 B 0.9507 0.1244 0.170 C 0.9481 0.1532 0.258 下載: 導(dǎo)出CSV
表 5 河寬擬合結(jié)果精度評(píng)價(jià)表
站點(diǎn) 河寬-水位R-square 河寬-徑流R-square A 0.834 0.906 B 0.879 0.921 C 0.908 0.917 下載: 導(dǎo)出CSV
表 6 徑流結(jié)果精度評(píng)價(jià)表
站點(diǎn) R-square RMSE(m3) RRMSE(%) MRRS-RCM模型 水深-徑流模型 MRRS-RCM模型 水深-徑流模型 MRRS-RCM模型 水深-徑流模型 A 0.9694 0.8647 201.2 287.9 12.622 20.773 B 0.9564 0.8902 218.6 291.6 14.546 19.801 C 0.9537 0.8874 193.8 296.2 14.739 20.393 下載: 導(dǎo)出CSV
-
張少文. 黃河流域天然年徑流變化特性分析及其預(yù)測(cè)[D]. [博士論文], 四川大學(xué), 2005.ZHANG Shaowen. Yellow River annual runoff analysis and its forecast[D]. [Ph.D. dissertation], Sichuan University, 2005. HUNDECHA Y and BáRDOSSY A. Modeling of the effect of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model[J]. Journal of Hydrology, 2004, 292(1/4): 281–295. doi: 10.1016/j.jhydrol.2004.01.002 TONG Xiaohua, PAN Haiyan, XIE Huan, et al. Estimating water volume variations in Lake Victoria over the past 22 years using multi-mission altimetry and remotely sensed images[J]. Remote Sensing of Environment, 2016, 187: 400–413. doi: 10.1016/j.rse.2016.10.012 PAPA F, DURAND F, ROSSOW W B, et al. Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12013. doi: 10.1029/2009JC006075 PAPA F, BALA S K, PANDEY R K, et al. Ganga - Brahmaputra river discharge from Jason-2 radar altimetry: An update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C11021. doi: 10.1029/2012JC008158 SICHANGI A W, WANG Lei, YANG Kun, et al. Estimating continental river basin discharges using multiple remote sensing data sets[J]. Remote Sensing of Environment, 2016, 179: 36–53. doi: 10.1016/j.rse.2016.03.019 袁翠. 基于雷達(dá)高度計(jì)的內(nèi)陸水體應(yīng)用研究[D]. [碩士論文], 中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院遙感與數(shù)字地球研究所), 2017.YUAN Cui. Applied research on radar altimetry over inland waters[D]. [Master dissertation], University of Chinese Academy of Sciences (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences), 2017. WU Lin, WANG Le, MIN Lin, et al. Discrimination of algal-bloom using spaceborne SAR observations of great lakes in China[J]. Remote Sensing, 2018, 10(5): 767. doi: 10.3390/rs10050767 BRAKENRIDGE G R, KNOX J C, PAYLOR II E D, et al. Radar remote sensing aids study of the Great Flood of 1993[J]. Eos, Transactions American Geophysical Union, 1994, 75(45): 521–527. doi: 10.1029/EO075i045p00521 SMITH L C, ISACKS B L, FORSTER R R, et al. Estimation of discharge from braided glacial rivers using ERS 1 synthetic aperture radar: First results[J]. Water Resources Research, 1995, 31(5): 1325–1329. doi: 10.1029/95wr00145 冷英, 劉忠玲, 張衡, 等. 一種改進(jìn)的ACM算法及其在鄱陽(yáng)湖水域監(jiān)測(cè)中的應(yīng)用[J]. 電子與信息學(xué)報(bào), 2017, 39(5): 1064–1070. doi: 10.11999/JEIT160870LENG Ying, LIU Zhongling, ZHANG Heng, et al. Improved ACM algorithm for Poyang lake monitoring[J]. Journal of Electronics &Information Technology, 2017, 39(5): 1064–1070. doi: 10.11999/JEIT160870 郭拯危, 王樂(lè), 宋國(guó)磊. 基于混合模糊的SAR圖像水陸分割算法[J]. 國(guó)土資源遙感, 2018, 30(4): 62–67. doi: 10.6046/gtzyyg.2018.04.10GUO Zhengwei, WANG Le, and SONG Guolei. SAR image land and water segmentation algorithm based on hybrid fuzzy[J]. Remote Sensing for Land &Resources, 2018, 30(4): 62–67. doi: 10.6046/gtzyyg.2018.04.10 FRAPPART F, CALMANT S, CAUHOPé M, et al. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin[J]. Remote Sensing of Environment, 2006, 100(2): 252–264. doi: 10.1016/j.rse.2005.10.027 張勝軍, 金濤勇, 褚永海, 等. Cryosat-2數(shù)據(jù)的大地水準(zhǔn)面分辨能力研究[J]. 武漢大學(xué)學(xué)報(bào): 信息科學(xué)版, 2016, 41(6): 759–764. doi: 10.13203/j.whugis20140829ZHANG Shengjun, JIN Taoyong, CHU Yonghai, et al. Estimation of the resolution capability of the cryosat-2 altimeter[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 759–764. doi: 10.13203/j.whugis20140829 BIANCAMARIA S, SCHAEDELE T, BLUMSTEIN D, et al. Validation of Jason-3 tracking modes over French rivers[J]. Remote Sensing of Environment, 2018, 209: 77–89. doi: 10.1016/j.rse.2018.02.037 CRéTAUX J F and BIRKETT C. Lake studies from satellite radar altimetry[J]. Comptes Rendus Geoscience, 2006, 338(14/15): 1098–1112. doi: 10.1016/j.crte.2006.08.002 ZAWADZKI L and ABLAIN M. Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a[J]. Ocean Science, 2016, 12(1): 9–18. doi: 10.5194/os-12-9-2016 諶華, 郭偉, 楊雙寶, 等. 一種合成孔徑雷達(dá)高度計(jì)定標(biāo)方法[J]. 電子與信息學(xué)報(bào), 2017, 39(9): 2232–2237. doi: 10.11999/JEIT161363CHEN Hua, GUO Wei, YANG Shuangbao, et al. A method of calibration of SAR altimeter[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2232–2237. doi: 10.11999/JEIT161363 湯玲英, 劉雯, 楊東, 等. 基于面向?qū)ο蠓椒ǖ腟entinel-1A SAR在洪水監(jiān)測(cè)中的應(yīng)用[J]. 地球信息科學(xué)學(xué)報(bào), 2018, 20(3): 377–384. doi: 10.12082/dqxxkx.2018.170599TANG Lingying, LIU Wen, YANG Dong, et al. Flooding monitoring application based on the object-oriented method and Sentinel-1A SAR data[J]. Journal of Geo-Information Science, 2018, 20(3): 377–384. doi: 10.12082/dqxxkx.2018.170599 張運(yùn)國(guó), 周愛(ài)春, 王愛(ài)麗. 黃河第1號(hào)洪水形成小浪底水庫(kù)開(kāi)閘泄洪[EB/OL]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201907/t20190702_528794.html, 2019.ZHANG Yunguo, ZHOU Aichun and WANG Aili. The formation of No.1 flood in the Yellow River - Opening of Xiaolangdi reservoir to discharge flood[EB/OL]. http://www.cma.gov.cn/2011xwzx/2011xqxxw/2011xqxyw/201907/t20190702_528794.html, 2019. -