負(fù)載作用下相依網(wǎng)絡(luò)擇優(yōu)恢復(fù)方法研究
doi: 10.11999/JEIT190486 cstr: 32379.14.JEIT190486
-
1.
空軍預(yù)警學(xué)院預(yù)警情報(bào)系 武漢 430019
-
2.
國(guó)防科技大學(xué)信息通信學(xué)院 武漢 430010
A Preferential Recovery Method of Interdependent Networks under Load
-
1.
Department of Early-Warning Intelligence, Air Force Early-Warning Academy, Wuhan 430019, China
-
2.
College of Information and Communication, National University of Defense Technology, Wuhan 430010, China
-
摘要:
優(yōu)選節(jié)點(diǎn)實(shí)施恢復(fù)是控制相依網(wǎng)絡(luò)級(jí)聯(lián)失效的有效措施。針對(duì)以往恢復(fù)模型未考慮節(jié)點(diǎn)負(fù)載的情況,該文首先分析了包含依賴失效和過(guò)載失效的級(jí)聯(lián)失效過(guò)程,構(gòu)建了負(fù)載作用下相依網(wǎng)絡(luò)恢復(fù)模型。然后,基于共同邊界節(jié)點(diǎn)的結(jié)構(gòu)和動(dòng)力學(xué)屬性,提出一種基于容量和連接邊的擇優(yōu)恢復(fù)(PRCCL)方法。實(shí)驗(yàn)結(jié)果表明,在無(wú)標(biāo)度相依網(wǎng)絡(luò)中,PRCCL方法恢復(fù)效果明顯好于基準(zhǔn)方法,恢復(fù)時(shí)間更短,恢復(fù)后的網(wǎng)絡(luò)具有更高的平均度和魯棒性;在Power網(wǎng)和Internet網(wǎng)構(gòu)成的相依網(wǎng)絡(luò)中,PRCCL方法恢復(fù)效果同樣優(yōu)于基準(zhǔn)方法;PRCCL方法的優(yōu)勢(shì)與恢復(fù)比例、負(fù)載控制參數(shù)成正比,與容忍系數(shù)成反比。實(shí)驗(yàn)結(jié)果驗(yàn)證了PRCCL方法的有效性,對(duì)于現(xiàn)實(shí)中相依網(wǎng)絡(luò)恢復(fù)工作具有科學(xué)指導(dǎo)價(jià)值。
-
關(guān)鍵詞:
- 相依網(wǎng)絡(luò) /
- 網(wǎng)絡(luò)恢復(fù) /
- 級(jí)聯(lián)失效 /
- 負(fù)載作用
Abstract:Optimal node recovery is an effective measure to control cascading failure of interdependent networks. In view of the fact that the previous recovery model does not consider the node load, this paper analyzes first the cascading failure process including dependent failure and overload failure, and constructs the recovery model of interdependent network under load. Then, considering the structure and dynamic properties of the mutual boundary nodes, a Preferential Recovery method based on Capacity and Connectivity Link (PRCCL) is proposed. Experiment results show that in scale-free independent networks, the recovery effect of PRCCL is better than benchmark methods, the recovery time is shorter, and the recovered networks have higher average degree and robustness. In the independent network composed of Power grid and Internet network, the recovery effect of PRCCL method is also better than the benchmark methods. The advantages of PRCCL are proportional to the recovery ratio, load control parameters and inversely proportional to the tolerance coefficient. The experimental results verify the validity of the PRCCL method, which has scientific guidance value for the recovery of interdependent networks in reality.
-
Key words:
- Interdependent networks /
- Network recovery /
- Cascading failure /
- Load effect
-
表 1 SF-ER和SF-SF相依網(wǎng)絡(luò)中4種方法迭代次數(shù)(NOI)對(duì)比
SF-ER SF-SF f 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 RR 2.00 2.00 2.15 4.09 10.99 10.44 10.13 8.73 3.04 3.10 3.61 9.68 15.10 15.59 15.75 16.94 PRD 2.00 2.00 2.14 4.02 9.67 7.29 6.17 5.56 3.03 3.06 3.22 5.94 11.69 11.85 12.25 12.13 PRL 2.00 2.00 2.14 4.16 9.82 8.47 6.83 6.39 3.03 3.06 3.24 6.4 12.06 12.01 12.09 12.48 PRCCL 2.00 2.00 2.14 3.99 9.61 7.27 5.81 5.12 3.03 3.07 3.20 4.98 9.12 9.42 10.07 11.06 下載: 導(dǎo)出CSV
表 2 4種方法恢復(fù)后網(wǎng)絡(luò)平均度和網(wǎng)絡(luò)負(fù)載對(duì)比
恢復(fù)網(wǎng)絡(luò)平均度 恢復(fù)網(wǎng)絡(luò)負(fù)載 f 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 RR 3.99 3.28 2.83 1.91 0.75 0.60 0.50 0.48 1186.5 1162.3 1102.8 654.8 121.8 42.9 51.9 124.3 PRD 4.68 4.23 3.91 3.46 1.79 1.08 1.02 0.90 1185.2 1161.4 1107.5 835.6 261.8 56.4 78.2 131.4 PRL 4.66 4.18 3.87 3.38 1.85 1.09 1.09 0.99 1185.2 1161.5 1108.4 817.8 268.3 62.0 83.8 142.4 PRCCL 4.69 4.22 4.00 4.02 2.78 1.56 1.12 1.10 1185.3 1162.0 1111.6 948.9 410.5 149.5 92.0 144.3 下載: 導(dǎo)出CSV
-
D’AGOSTINO G and SCALA A. Networks of Networks: The Last Frontier of Complexity[M]. Cham: Springer, 2014: 3–36. CHEN Zhenhao, WU Jiajing, XIA Yongxiang, et al. Robustness of interdependent power grids and communication networks: A complex network perspective[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(1): 115–119. doi: 10.1109/TCSII.2017.2705758 BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291): 1025–1028. doi: 10.1038/nature08932 ZIO E. Challenges in the vulnerability and risk analysis of critical infrastructures[J]. Reliability Engineering & System Safety, 2016, 152: 137–150. doi: 10.1016/j.ress.2016.02.009 SHEKHTMAN L M, DANZIGER M M, and HAVLIN S. Recent advances on failure and recovery in networks of networks[J]. Chaos, Solitons & Fractals, 2016, 90: 28–36. doi: 10.1016/j.chaos.2016.02.002 SCHNEIDER C M, YAZDANI N, ARAúJO N A M, et al. Towards designing robust coupled networks[J]. Scientific Reports, 2013, 3(1): 1969. doi: 10.1038/srep01969 WANG Xingyuan, ZHOU Wenjie, LI Rui, et al. Improving robustness of interdependent networks by a new coupling strategy[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 492: 1075–1080. doi: 10.1016/j.physa.2017.11.037 PARSHANI R, ROZENBLAT C, IETRI D, et al. Inter-similarity between coupled networks[J]. EPL (Europhysics Letters) , 2010, 92(6): 68002. doi: 10.1209/0295-5075/92/68002 WANG Junde, LAO Songyang, RUAN Yirun, et al. Research on the robustness of interdependent networks under localized attack[J]. Applied Sciences, 2017, 7(6): 597. doi: 10.3390/app7060597 HU Yanqing, ZHOU Dong, ZHANG Rui, et al. Percolation of interdependent networks with intersimilarity[J]. Physical Review E, 2013, 88(5): 052805. doi: 10.1103/PhysRevE.88.052805 WANG Shuai and LIU Jing. Designing comprehensively robust networks against intentional attacks and cascading failures[J]. Information Sciences, 2019, 478: 125–140. doi: 10.1016/j.ins.2018.11.005 MAJDANDZIC A, PODOBNIK B, BULDYREV S V, et al. Spontaneous recovery in dynamical networks[J]. Nature Physics, 2014, 10(1): 34–38. doi: 10.1038/NPHYS2819 MAJDANDZIC A, BRAUNSTEIN L A, CURME C, et al. Multiple tipping points and optimal repairing in interacting networks[J]. Nature Communications, 2016, 7(1): 10850. doi: 10.1038/ncomms10850 DI MURO M A, LA ROCCA C E, STANLEY H E, et al. Recovery of interdependent networks[J]. Scientific Reports, 2016, 6(1): 22834. doi: 10.1038/srep22834 HE Xian and CHA E J. Modeling the damage and recovery of interdependent critical infrastructure systems from natural hazards[J]. Reliability Engineering & System Safety, 2018, 177: 162–175. doi: 10.1016/j.ress.2018.04.029 ZHONG Jilong, ZHANG Fengming, YANG Shunkun, et al. Restoration of interdependent network against cascading overload failure[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 512: 884–891. doi: 10.1016/j.physa.2018.09.130 吳佳鍵, 龔凱, 王聰, 等. 相依網(wǎng)絡(luò)上基于相連邊的擇優(yōu)恢復(fù)算法[J]. 物理學(xué)報(bào), 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526WU Jiajian, GONG Kai, WANG Cong, et al. Enhancing resilience of interdependent networks against cascading failures under preferential recovery strategies[J]. Acta Physica Sinica, 2018, 67(8): 088901. doi: 10.7498/aps.67.20172526 MOTTER A E and LAI Yingcheng. Cascade-based attacks on complex networks[J]. Physical Review E, 2002, 66(6): 065102. doi: 10.1103/PhysRevE.66.065102 GAO Jiazi, YIN Yongfeng, FIONDELLA L, et al. Recovery of coupled networks after cascading failures[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 650–657. doi: 10.21629/JSEE.2018.03.22 CHEN Duanbing, Lü Linyuan, SHANG Mingsheng, et al. Identifying influential nodes in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(4): 1777–1787. doi: 10.1016/j.physa.2011.09.017 WATTS D J and STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440–442. doi: 10.1038/30918 NEWMAN M. University of Oregon route views archive project[EB/OL]. http://routeviews.org/, 2006. -