一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

關(guān)于系統(tǒng)級(jí)故障診斷的煙花-反向傳播神經(jīng)網(wǎng)絡(luò)算法

歸偉夏 陸倩 蘇美力

歸偉夏, 陸倩, 蘇美力. 關(guān)于系統(tǒng)級(jí)故障診斷的煙花-反向傳播神經(jīng)網(wǎng)絡(luò)算法[J]. 電子與信息學(xué)報(bào), 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484
引用本文: 歸偉夏, 陸倩, 蘇美力. 關(guān)于系統(tǒng)級(jí)故障診斷的煙花-反向傳播神經(jīng)網(wǎng)絡(luò)算法[J]. 電子與信息學(xué)報(bào), 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484
Weixia GUI, Qian LU, Meili SU. A Firewoks Algorithm-Back Propagation Fault Diagnosis Algorithm for System-level Fault Diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484
Citation: Weixia GUI, Qian LU, Meili SU. A Firewoks Algorithm-Back Propagation Fault Diagnosis Algorithm for System-level Fault Diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1102-1109. doi: 10.11999/JEIT190484

關(guān)于系統(tǒng)級(jí)故障診斷的煙花-反向傳播神經(jīng)網(wǎng)絡(luò)算法

doi: 10.11999/JEIT190484 cstr: 32379.14.JEIT190484
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61862003, 61862004),廣西研究生教育創(chuàng)新計(jì)劃資助項(xiàng)目(YCSW2019036)
詳細(xì)信息
    作者簡(jiǎn)介:

    歸偉夏:女,1974年生,副教授,博士,研究方向?yàn)橹悄苡?jì)算、網(wǎng)絡(luò)與并行分布式計(jì)算

    陸倩:女,1994年生,碩士生,研究方向?yàn)橹悄芩惴?、并行?jì)算

    蘇美力:女,1989年生,碩士生,研究方向?yàn)橹悄芩惴?、并行?jì)算

    通訊作者:

    陸倩 563766390@qq.com

  • 中圖分類號(hào): TP306

A Firewoks Algorithm-Back Propagation Fault Diagnosis Algorithm for System-level Fault Diagnosis

Funds: The National Natural Science Foundation of China (61862003, 61862004), The Innovation Project of Guangxi Graduate Education (YCSW2019036)
  • 摘要:

    為了更快速且精確地診斷出大規(guī)模多處理器系統(tǒng)中的故障單元,該文首次將改進(jìn)的煙花算法和反向傳播(BP)神經(jīng)網(wǎng)絡(luò)相結(jié)合,提出一種新的系統(tǒng)級(jí)故障診斷算法—煙花-反向傳播神經(jīng)網(wǎng)絡(luò)故障診斷算法(FWA-BPFD)。首先,在煙花算法中引入雙種群策略、協(xié)作算子以及最優(yōu)算子,設(shè)計(jì)新的適應(yīng)度函數(shù),優(yōu)化變異算子、映射規(guī)則和選擇策略。然后,利用煙花算法全局搜索能力和局部搜索能力的自調(diào)節(jié)機(jī)制,優(yōu)化BP神經(jīng)網(wǎng)絡(luò)中的權(quán)值和閾值的尋優(yōu)過程。仿真實(shí)驗(yàn)結(jié)果表明,該文算法相較于其他算法不僅有效地降低了迭代次數(shù)和訓(xùn)練時(shí)間,而且還進(jìn)一步提高了診斷精度。

  • 圖  1  3層BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖

    圖  2  均勻交叉運(yùn)算示意圖

    圖  3  煙花算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的流程圖

    圖  4  各關(guān)鍵參數(shù)對(duì)算法CPU運(yùn)行時(shí)間的影響

    圖  5  算法訓(xùn)練性能圖

    圖  6  不同系統(tǒng)規(guī)模中4種算法診斷正確率的比較

    表  1  PMC診斷模型

    測(cè)試結(jié)點(diǎn)${u_i}$被測(cè)試結(jié)點(diǎn)${u_j}$測(cè)試結(jié)果${u_{ij}}$
    000
    011
    100/1
    110/1
    下載: 導(dǎo)出CSV

    表  2  煙花算法的其它參數(shù)設(shè)置

    參數(shù)名稱參數(shù)說明參數(shù)值
    ${A_{\rm{min}}}$煙花的最小爆炸半徑2
    ${p_{\rm{c}}}$協(xié)作算子交叉概率0.5
    ${X_{\rm{LB}}}$煙花位置下界值0
    ${X_{\rm{UB}}}$煙花位置上界值1
    T最大迭代次數(shù)1000
    下載: 導(dǎo)出CSV

    表  3  神經(jīng)網(wǎng)絡(luò)訓(xùn)練關(guān)鍵參數(shù)設(shè)置

    參數(shù)名稱參數(shù)說明參數(shù)值
    show設(shè)置數(shù)據(jù)顯示刷新頻率30
    lr網(wǎng)絡(luò)的學(xué)習(xí)率0.01
    goal網(wǎng)絡(luò)輸出誤差最小值7e-07
    epochs最大迭代次數(shù)10000
    下載: 導(dǎo)出CSV

    表  4  4種算法在不同系統(tǒng)規(guī)模中的性能比較

    算法名稱$n = 50$$n = 100$
    訓(xùn)練時(shí)間(s)迭代次數(shù)訓(xùn)練時(shí)間(s)迭代次數(shù)
    BPFD412685341635937
    CS-BPFD233327178102134
    GA-BPFD310365278903978
    本文FWA-BPFD212305167551998
    下載: 導(dǎo)出CSV
  • PREPARATA F P, METZE G, and CHIEN R T. On the connection assignment problem of diagnosable systems[J]. IEEE Transactions on Electronic Computers, 1967, EC-16(6): 848–854. doi: 10.1109/PGEC.1967.264748
    BARSI F, GRANDONI F, and MAESTRINI P. A theory of diagnosability of digital systems[J]. IEEE Transactions on Computers, 1976, C-25(6): 585–593. doi: 10.1109/tc.1976.1674658
    CHWA K Y and HAKIMI S L. Schemes for fault-tolerant computing: a comparison of modularly redundant and t-diagnosable systems[J]. Information and Control, 1981, 49(3): 212–238. doi: 10.1016/S0019-9958(81)90388-0
    MALEK M. A comparison connection assignment for diagnosis of multiprocessor systems[C]. The 7th Annual Symposium on Computer Architecture. New York, USA, 1980: 31–36. doi: 10.1145/800053.801906.
    MAENG J and MALEK M. A comparison connection assignment for self-diagnosis of multiprocessor systems[C]. The 11th International Symposium on Fault-Tolerant Computing, Portland, USA, 1981: 173–175.
    XIE Min, YE Liangcheng, and LIANG Jiarong. A t/k diagnosis algorithm on hypercube‐like networks[J]. Concurrency and Computation: Practice and Experience, 2018, 30(6): e4358. doi: 10.1002/cpe.4358
    馮海林, 雷花, 梁倫. 一種基于PMC模型下的概率性矩陣診斷算法[J]. 南京理工大學(xué)學(xué)報(bào): 自然科學(xué)版, 2017, 41(4): 479–485. doi: 10.14177/j.cnki.32-1397n.2017.41.04.013

    FENG Hailin, LEI Hua, and LIANG Lun. Probability matrix diagnosis algorithm based on PMC model[J]. Journal of Nanjing University of Science and Technology, 2017, 41(4): 479–485. doi: 10.14177/j.cnki.32-1397n.2017.41.04.013
    云龍, 梁家榮, 周寧. 基于互連網(wǎng)絡(luò)系統(tǒng)故障的新型自適應(yīng)診斷算法[J]. 計(jì)算機(jī)應(yīng)用研究, 2017, 34(9): 2638–2641, 2650. doi: 10.3969/j.issn.1001-3695.2017.09.016

    YUN Long, LIANG Jiarong, and ZHOU Ning. Novel adapted algorithm for interconnection network[J]. Application Research of Computers, 2017, 34(9): 2638–2641, 2650. doi: 10.3969/j.issn.1001-3695.2017.09.016
    MOURAD E and NAYAK A. Comparison-based system-level fault diagnosis: A neural network approach[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(6): 1047–1059. doi: 10.1109/TPDS.2011.248
    歸偉夏, 劉翠. 一種Malek模型下的系統(tǒng)故障診斷算法[J]. 計(jì)算機(jī)工程與應(yīng)用, 2017, 53(13): 78–82, 145. doi: 10.3778/j.issn.1002-8331.1607-0130

    GUI Weixia and LIU Cui. System-level diagnosis algorithm based on Malek model[J]. Computer Engineering and Applications, 2017, 53(13): 78–82, 145. doi: 10.3778/j.issn.1002-8331.1607-0130
    WANG Yuxi, LI Zhan, XU Minghui, et al. An evolutionary approach based on ant colony system to system-level fault diagnosis[C]. The 8th IEEE International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 2016: 2493–2497. doi: 10.1109/IPEMC.2016.7512690.
    趙冬. 關(guān)于系統(tǒng)級(jí)故障診斷的兩種高效算法[D]. [碩士論文], 南京財(cái)經(jīng)大學(xué), 2016.

    ZHAO Dong. Two efficient algorithms about system-level fault diagnosis[D]. [Master’s dissertation], Nanjing University of Finance and Economics, 2016.
    LU Qian, GUI Weixia, and SU Meili. A fireworks algorithm for the system-level fault diagnosis based on MM* model[J]. IEEE Access, 2019, 7: 136975–136985. doi: 10.1109/ACCESS.2019.2942336
    韓樹楠, 張旻, 李歆昊. 基于構(gòu)造代價(jià)函數(shù)求解的自同步擾碼盲識(shí)別方法[J]. 電子與信息學(xué)報(bào), 2018, 40(8): 1971–1977. doi: 10.11999/JEIT171026

    HAN Shunan, ZHANG Min, and LI Xinhao. A blind identification method of self-synchronous scramblers based on optimization of established cost function[J]. Journal of Electronics &Information Technology, 2018, 40(8): 1971–1977. doi: 10.11999/JEIT171026
    梁曉萍, 郭振軍, 朱昌洪. 基于頭腦風(fēng)暴優(yōu)化算法的BP神經(jīng)網(wǎng)絡(luò)模糊圖像復(fù)原[J]. 電子與信息學(xué)報(bào), 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261

    LIANG Xiaoping, GUO Zhenjun, and ZHU Changhong. BP neural network fuzzy image restoration basedon brain storming optimization algorithm[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2980–2986. doi: 10.11999/JEIT190261
    CUI Jiefen, LI Yinping, WANG Shixin, et al. Directional preparation of anticoagulant-active sulfated polysaccharides from Enteromorpha prolifera using artificial neural networks[J]. Scientific Reports, 2018, 8(1): No. 3062. doi: 10.1038/s41598-018-21556-x
    LI Jingmei, TIAN Qiao, ZHANG Guoyin, et al. Task scheduling algorithm based on fireworks algorithm[J]. EURASIP Journal on Wireless Communications and Networking, 2018, 2018(1): No. 256. doi: 10.1186/s13638-018-1259-2
    XUE Yu, ZHAO Binping, MA Tinghuai, et al. A self-adaptive fireworks algorithm for classification problems[J]. IEEE Access, 2018, 6: 44406–44416. doi: 10.1109/ACCESS.2018.2858441
    劉田田. 基于BP神經(jīng)網(wǎng)絡(luò)的系統(tǒng)級(jí)故障診斷算法研究[D]. [碩士論文], 南京財(cái)經(jīng)大學(xué), 2015.

    LIU Tiantian. System level fault diagnosis algorithm research based on BP neural network[D]. [Master’s dissertation], Nanjing University of Finance and Economics, 2015.
  • 加載中
圖(6) / 表(4)
計(jì)量
  • 文章訪問數(shù):  6867
  • HTML全文瀏覽量:  1266
  • PDF下載量:  153
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-06-28
  • 修回日期:  2020-01-19
  • 網(wǎng)絡(luò)出版日期:  2020-02-13
  • 刊出日期:  2020-06-04

目錄

    /

    返回文章
    返回