基于虛擬光學(xué)的視覺顯著目標(biāo)可控放大重建
doi: 10.11999/JEIT190469 cstr: 32379.14.JEIT190469
-
1.
福建師范大學(xué)數(shù)學(xué)與信息學(xué)院 ??福州 ??350007
-
2.
福建師范大學(xué)數(shù)字福建大數(shù)據(jù)安全技術(shù)研究所 ??福州 ??350007
-
3.
福建省船政交通職業(yè)學(xué)院信息工程系 ??福州 ??350007
Controllable Magnification for Visual Saliency Object Based on Virtual Optics
-
1.
College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350007, China
-
2.
Digital Fujian Institute of Big Data Security Technology, Fujian Normal University, Fuzhou 350007, China
-
3.
Department of Information Engineering, Fujian Chuanzheng Communications college, Fuzhou 350007, China
-
摘要:
該文提出一種基于虛擬光學(xué)的視覺顯著目標(biāo)高分辨率可控放大重建方法。原始圖像放置于虛擬光路物平面,首先通過衍射逆計(jì)算獲得原始圖像在虛擬衍射面的光波信號(hào),再對(duì)虛擬衍射面光波用球面波照射后作正向衍射計(jì)算,通過改變觀測(cè)平面位置可重建出不同放大率的原始圖像。仿真測(cè)試結(jié)果表明,與一般的插值放大方法相比,所獲得的放大后的圖像特別是在顯著性區(qū)域表示出良好的視覺感知效果。將包含人臉的低分辨率降質(zhì)圖像作為待重建信號(hào),所重建人臉的顯著性區(qū)域如眼睛、鼻子等比一般重建方法更清晰。用水平集方法結(jié)合顯著圖分割出原始圖像中的局部顯著區(qū)域并作放大重建和輪廓提取,輪廓表現(xiàn)出良好的光滑性。
-
關(guān)鍵詞:
- 圖像分割 /
- 虛擬光學(xué) /
- 顯著性目標(biāo) /
- 可控放大
Abstract:A high-resolution controllable magnification method for visual saliency object based on virtual optics is proposed in this paper. The original image is placed on the virtual object plane. Firstly, the diffractive wave of the original image on the virtual diffraction plane is obtained by inverse diffraction calculation, and then the forward diffraction calculation is carried out after the virtual diffraction wave is irradiated by spherical wave. The original images with different magnification can be reconstructed by changing the position of the observation plane. The simulation results show that compared with the general interpolation method, the magnified image shows a good visual perception effect, especially in the saliency region. When the degraded face image is used as the signal to be reconstructed, the significant areas such as eyes and nose are clearer than the general method. The local salient region in the original image is segmented by the level set method combined with salient map, and the magnification and contour extraction are performed. The contours show good smoothness.
-
Key words:
- Image segmentation /
- Virtual optics /
- Saliency object /
- Controllable magnification
-
表 1 放大重建像質(zhì)量指標(biāo)
測(cè)試圖像 NMSE NLVE SFM 歸一化相關(guān)系數(shù) Mola 0.1057 0.0157 0.0042 0.9977 Barbara 0.1106 0.0145 0.0019 0.9963 Couple 0.1045 0.0021 0.0022 0.9956 平均值 0.0769 0.0108 0.0027 0.9965 下載: 導(dǎo)出CSV
-
PARK S C, PARK M K, and KANG M G. Super-resolution image reconstruction: A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21–36. doi: 10.1109/msp.2003.1203207 LI Xin and ORCHARD M T. New edge-directed interpolation[J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521–1527. doi: 10.1109/83.951537 ASUNI N and GIACHETTI A. Accuracy improvements and artifacts removal in edge based image interpolation[C]. The 3rd International Conference on Computer Vision Theory and Applications, Funchal, Portugal, 2008: 58–65. ZHANG Yunfeng, FAN Qinglan, BAO Fangxun, et al. Single-image super-resolution based on rational fractal interpolation[J]. IEEE Transactions on Image Processing, 2018, 27(8): 3782–3797. doi: 10.1109/TIP.2018.2826139 YANG Wenhan, FENG Jiashi, YANG Jianchao, et al. Deep edge guided recurrent residual learning for image super-resolution[J]. IEEE Transactions on Image Processing, 2017, 26(12): 5895–5907. doi: 10.1109/TIP.2017.2750403 MORSE B S and SCHWARTZWALD D. Image magnification using level-set reconstruction[C]. 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, 2001: 333–340. doi: 10.1109/CVPR.2001.990494. RATAKONDA K and AHUJA N. POCS based adaptive image magnification[C]. 1998 IEEE International Conference on Image Processing, Chicago, USA, 1998: 203–207. doi: 10.1109/ICIP.1998.727167. CAI Qing, LIU Huiying, QIAN Yiming, et al. Saliency-guided level set model for automatic object segmentation[J]. Pattern Recognition, 2019, 93: 147–163. doi: 10.1016/j.patcog.2019.04.019 李俊昌, 樊則賓. 彩色數(shù)字全息的非插值波面重建算法研究[J]. 物理學(xué)報(bào), 2010, 59(4): 2457–2461. doi: 10.7498/aps.59.2457LI Junchang and FAN Zebin. Algorithm of the non-interpolation wave-front reconstruction of the color digital holography[J]. Acta Physica Sinica, 2010, 59(4): 2457–2461. doi: 10.7498/aps.59.2457 李俊昌, 熊秉衡. 信息光學(xué)教程[M]. 北京: 科學(xué)出版社, 2011: 45–57.LI Junchang and XIONG Bingheng. Information Optics[M]. Beijing: Science Press, 2011: 45–57. LI Junchang, PENG Zujie, TANKAM P, et al. Digital holographic reconstruction of a local object field using an adjustable magnification[J]. Journal of the Optical Society of America A, 2011, 28(6): 1291–1296. doi: 10.1364/JOSAA.28.001291 RESTREPO J F and GARCIA-SUCERQUIA J. Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform[J]. Applied Optics, 2010, 49(33): 6430–6435. doi: 10.1364/AO.49.006430 GOODMAN J W. Introduction to Fourier Optics[M]. 2nd ed. New York: McGraw-Hill Editions, 1996: 88–110. SCHNARS U and JüPTNER W P O. Digital recording and numerical reconstruction of holograms[J]. Measurement Science and Technology, 2002, 13(9): R85–R101. doi: 10.1088/0957-0233/13/9/201 QIN Yao, LU Huchuan, XU Yiqun, et al. Saliency detection via cellular automata[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 110–119. doi: 10.1109/CVPR.2015.7298606. LI Chunming, XU Chenyang, GUI Changfeng, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243–3254. doi: 10.1109/TIP.2010.2069690 CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8(6): 679–698. doi: 10.1109/TPAMI.1986.4767851 吳援明, 梁恩志. 一種基于熵的放大后圖像質(zhì)量的評(píng)價(jià)方法[J]. 信號(hào)處理, 2004, 20(2): 201–203. doi: 10.3969/j.issn.1003-0530.2004.02.022WU Yuanming and LIANG Enzhi. A new method of zoomed images evaluation[J]. Signal Processing, 2004, 20(2): 201–203. doi: 10.3969/j.issn.1003-0530.2004.02.022 HOU Xiaodi and ZHANG Liqing. Saliency detection: A spectral residual approach[C]. 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, USA, 2007: 1–8. doi: 10.1109/CVPR.2007.383267. QIN Yi, GONG Qiong, WANG Zhipeng, et al. Optical multiple-image encryption in diffractive-imaging-based scheme using spectral fusion and nonlinear operation[J]. Optics Express, 2016, 24(23): 26877–26886. doi: 10.1364/OE.24.026877 -