H-CRAN網(wǎng)絡(luò)下聯(lián)合擁塞控制和資源分配的網(wǎng)絡(luò)切片動(dòng)態(tài)資源調(diào)度策略
doi: 10.11999/JEIT190439 cstr: 32379.14.JEIT190439
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院移動(dòng)通信技術(shù)重點(diǎn)實(shí)驗(yàn)室 重慶 400065
-
2.
重慶大學(xué)光電工程學(xué)院 重慶 400044
Joint Congestion Control and Resource Allocation Dynamic Scheduling Strategy for Network Slices in Heterogeneous Cloud Raido Access Network
-
1.
Key Laboratory of Mobile Communication Technology, School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
School of Measurement and Control Technology and Instruments, Chongqing University, Chongqing 400044, China
-
摘要:
針對(duì)異構(gòu)云無線接入網(wǎng)絡(luò)(H-CRAN)網(wǎng)絡(luò)下基于網(wǎng)絡(luò)切片的在線無線資源動(dòng)態(tài)優(yōu)化問題,該文通過綜合考慮業(yè)務(wù)接入控制、擁塞控制、資源分配和復(fù)用,建立一個(gè)以最大化網(wǎng)絡(luò)平均和吞吐量為目標(biāo),受限于基站(BS)發(fā)射功率、系統(tǒng)穩(wěn)定性、不同切片的服務(wù)質(zhì)量(QoS)需求和資源分配等約束的隨機(jī)優(yōu)化模型,并進(jìn)而提出了一種聯(lián)合擁塞控制和資源分配的網(wǎng)絡(luò)切片動(dòng)態(tài)資源調(diào)度算法。該算法會(huì)在每個(gè)資源調(diào)度時(shí)隙內(nèi)動(dòng)態(tài)地為性能需求各異的網(wǎng)絡(luò)切片中的用戶分配資源。仿真結(jié)果表明,該文算法能在滿足各切片用戶QoS需求和維持網(wǎng)絡(luò)穩(wěn)定的基礎(chǔ)上,提升網(wǎng)絡(luò)整體吞吐量,并且還可通過調(diào)整控制參量的取值實(shí)現(xiàn)時(shí)延和吞吐量間的動(dòng)態(tài)平衡。
-
關(guān)鍵詞:
- 異構(gòu)云無線接入網(wǎng)絡(luò) /
- 網(wǎng)絡(luò)切片 /
- 資源分配 /
- 李雅普諾夫隨機(jī)優(yōu)化
Abstract:For online dynamic radio resources optimization for network slices in Heterogeneous Cloud Raido Access Network (H-CRAN), by comprehensively considering traffic admission control, congestion control, resource allocation and reuse, the problem is formulated as a stochastic optimization programming which maximizes network average total throughput subject to Base Station (BS) transmit power, system stability, Quality of Service (QoS) requirements of different slices and resource allocation constraints. Then, a joint congestion control and resource allocation dynamic scheduling algorithm is proposed which will dynamically allocate resources to users in network slices with distinct performance requirements within each resource scheduling time slot. The simulation results show that the proposed algorithm can improve the network overall throughput while satisfying the QoS requirement of each slice user and maintaining network stability. Besides, it could also flexibly strike a dynamic balance between delay and throughput by simply tuning an introduced control parameter.
-
表 1 H-CRAN網(wǎng)絡(luò)下聯(lián)合擁塞控制和資源分配的網(wǎng)絡(luò)切片動(dòng)態(tài)資源調(diào)度算法
(1) 初始化控制參量$V > 0$、各用戶的初始隊(duì)列長(zhǎng)度${Q_u}(0),\forall u \in {\cal{U}}$和最大時(shí)隙數(shù)${T^{\max }}$初始化最大迭代次數(shù)$T_0^{\max }$和允許誤差$\delta $ (2) for $t = 0,1, ··· ,{T^{\max } } - 1$ (3) 根據(jù)式(24)分別計(jì)算各用戶當(dāng)前時(shí)隙最優(yōu)的流量接入控制策略 (4) Repeat: (5) 令迭代索引$n = 1$,初始化拉格朗日乘子${{\lambda}} $, ${{\eta }}$和${{\mu}} $ (6) for $s \in {\cal{S}}$ (7) 計(jì)算子載波$s$當(dāng)前時(shí)隙(近似)最優(yōu)的子載波復(fù)用、分配和功率分配策略${\alpha _s}^*$, ${{\beta}} _s^*$和${{{P}}_s}^*$,進(jìn)而更新各用戶剩余的排隊(duì)隊(duì)列長(zhǎng)度 (8) 若某用戶$u \in {\cal{U}}$已經(jīng)獲得了足夠的子載波(即其隊(duì)列長(zhǎng)度為0),則將其從接下來的子載波分配過程中排除。 (9) 若所有用戶均分配到足夠的子載波,則break (10) end for (11) 根據(jù)得到的(近似)最優(yōu)子載波復(fù)用、分配和功率分配策略${\alpha ^*}$, ${\beta ^*}$和${P^*}$計(jì)算拉格朗日函數(shù)${\cal{L}}{\left( {\alpha ,\beta ,P,\lambda ,\eta ,\mu } \right)^{(n)}}$ (12) Until$\left| { {\cal{L} }{ {\left( {\alpha ,\beta ,P,\lambda ,\eta ,\mu } \right)}^{(n)} } - {\cal{L} }{ {\left( {\alpha ,\beta ,P,\lambda ,\eta ,\mu } \right)}^{(n - 1)} } } \right| \le \delta $ or $n > T_0^{\max }$, then stop Otherwise, 利用次梯度法更新拉格朗日乘子$\lambda $,
$\eta $和$\mu $,令$n = n + 1$并返回第6步(13) 根據(jù)式(17)更新各用戶在下一時(shí)隙的業(yè)務(wù)隊(duì)列長(zhǎng)度 (14) end for (15) 輸出:(近似)最優(yōu)流量接入控制、子載波復(fù)用和分配以及功率分配策略$r$, $\alpha $, $\beta $和$P$,${Q_u}(t),\forall u \in {\cal{U}},t$。 下載: 導(dǎo)出CSV
-
Cisco System. Cisco visual networking index: Global mobile data traffic forecast update, 2017–2022 White Paper[R/OL]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html, 2019. LI Xin, SAMAKA M, CHAN H A, et al. Network slicing for 5G: challenges and opportunities[J]. IEEE Internet Computing, 2017, 21(5): 20–27. doi: 10.1109/MIC.2017.3481355 ITU-R. IMT vision-framework and overall objectives of the future development of IMT for 2020 and beyond[EB/OL]. http://www.itu.int/pub/R-REC/en. 2020. LI Jian, PENG Mugen, YU Yuling, et al. Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9873–9887. doi: 10.1109/TVT.2016.2531184 ZHANG Haijun, WANG Baobao, JIANG Chunxiao, et al. Energy efficient dynamic resource optimization in NOMA system[J]. IEEE Transactions on Wireless Communications, 2018, 17(9): 5671–5683. doi: 10.1109/TWC.2018.2844359 DANG Tian and PENG Mugen. Delay-aware radio resource allocation optimization for network slicing in fog radio access networks[C]. 2018 IEEE International Conference on Communications Workshops, Kansas City, USA, 2018: 1–6. doi: 10.1109/ICCW.2018.8403717. AMANI N, PEDRAM H, TAHERI H, et al. Energy-efficient resource allocation in heterogeneous cloud radio access networks via BBU offloading[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1365–1377. doi: 10.1109/TVT.2018.2882466 KIM T and CHANG J M. Profitable and energy-efficient resource optimization for heterogeneous cloud-based radio access networks[J]. IEEE Access, 2019, 7: 34719–34737. doi: 10.1109/ACCESS.2019.2904766 ZHANG Biling, MAO Xingwang, YU J L, et al. Resource allocation for 5G heterogeneous cloud radio access networks with D2D communication: a matching and coalition approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5883–5894. doi: 10.1109/TVT.2018.2802900 唐倫, 魏延南, 馬潤(rùn)琳, 等. 虛擬化云無線接入網(wǎng)絡(luò)下基于在線學(xué)習(xí)的網(wǎng)絡(luò)切片虛擬資源分配算法[J]. 電子與信息學(xué)報(bào), 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771TANG Lun, WEI Yannan, MA Runlin, et al. Online learning-based virtual resource allocation for network slicing in virtualized cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1533–1539. doi: 10.11999/JEIT180771 MEI Jie, ZHENG Kan, ZHAO Long, et al. A latency and reliability guaranteed resource allocation scheme for LTE V2V communication systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(6): 3850–3860. doi: 10.1109/TWC.2018.2816942 NEELY M J. Stochastic network optimization with application to communication and queueing systems[J]. Synthesis Lectures on Communication Networks, 2010, 3(1): 15–62. doi: 10.2200/S00271ED1V01Y201006CNT007 MOKDAD A, AZMI P, MOKARI N, et al. Cross-layer energy efficient resource allocation in PD-NOMA based H-CRANs: implementation via GPU[J]. IEEE Transactions on Mobile Computing, 2019, 18(6): 1246–1259. doi: 10.1109/TMC.2018.2860985 TANG Liya, ZHANG Xian, XIANG Hongyu, et al. Joint resource allocation and caching placement for network slicing in fog radio access networks[C]. The 18th International Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan, 2017: 1–6. doi: 10.1109/SPAWC.2017.8227791. LEE Y L, LOO J, CHUAH T C, et al. Dynamic network slicing for multitenant heterogeneous cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2146–2161. doi: 10.1109/TWC.2017.2789294 TANG Lun, YANG Xixi, WU Xiaolin, et al. Queue stability-based virtual resource allocation for virtualized wireless networks with self-backhauls[J]. IEEE Access, 2018, 6: 13604–13616. doi: 10.1109/ACCESS.2018.2797088 -