基于多幀相位增強(qiáng)的米波雷達(dá)低仰角目標(biāo)DOA估計方法
doi: 10.11999/JEIT190432 cstr: 32379.14.JEIT190432
-
西安電子科技大學(xué)雷達(dá)信號處理國家重點實驗室 西安 710071
Low-elevation DOA Estimation for VHF Radar Based on Multi-frame Phase Feature Enhancement
-
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
摘要:
針對米波雷達(dá)低仰角目標(biāo)的DOA估計問題,該文提出一種新的基于多幀相位特征增強(qiáng)方法,所提方法可以有效解決低仰角條件下陣列接收信號中直達(dá)信號相位特征模糊問題,進(jìn)而提高DOA估計精度。通過學(xué)習(xí)多幀原始數(shù)據(jù)的相位分布特征與理想環(huán)境下直達(dá)波信號的相位分布特征之間的復(fù)雜映射關(guān)系,有效削弱多徑信號引起的相位誤差,將增強(qiáng)后的相位信息與原始的幅度信息進(jìn)行數(shù)據(jù)重組,并利用已有的超分辨算法進(jìn)行DOA估計。通過計算機(jī)仿真實驗和實測數(shù)據(jù)驗證,該文所提方法在DOA估計性能以及泛化能力上優(yōu)于基于物理驅(qū)動的MUSIC算法以及數(shù)據(jù)驅(qū)動的基于特征反演和基于支持向量回歸的兩種估計方法。
-
關(guān)鍵詞:
- 雷達(dá)信號處理 /
- 來波方向估計 /
- 多幀相位增強(qiáng) /
- 米波雷達(dá)
Abstract:For the DOA estimation problem of low-elevation target of VHF radar, a new multi-frame phase feature enhancement based method is proposed, which solves effectively the phase feature ambiguity of direct signal, and thus improves the accuracy of DOA estimation. By learning the complex mapping relationship between the phase distribution of the multi-frame data and ideal phase distribution of the direct signal, the fuzzy phase information is enhanced and is used to reconstruct a new data matrix with original amplitude information. The DOA is estimated by conventional methods using new data matrix, which effectively improves the DOA estimation accuracy of the low-elevation target. The effectiveness of proposed method is validated by computer simulation experiments and real data, and it shows higher accuracy compared with physics-driven methods including MUSIC method and state-of-the-art data-driven method including feature reversal and Support Vector Regression (SVR).
-
表 1 深度神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)配置
網(wǎng)絡(luò)結(jié)構(gòu) 激活函數(shù) 學(xué)習(xí)率 初始化方式 ${{x}} \times 1024 \times 1024 \times 1024 \times {{o}}$ ReLU 10–4 高斯隨機(jī)初始化 下載: 導(dǎo)出CSV
表 2 深度卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)配置
網(wǎng)絡(luò)結(jié)構(gòu) 卷積核大小 池化層大小 激活函數(shù) 學(xué)習(xí)率 初始化方式 2層卷積層 $3 \times 1 \times 15$ $1 \times 3$ ReLU 10–4 高斯隨機(jī) 3層全連接層 $3 \times 15 \times 30$ 初始化 下載: 導(dǎo)出CSV
表 3 有效點數(shù)占比(%)
方法 DBF SSMUSIC 3幀DNN 5幀DNN 7幀DNN 3幀CNN 5幀CNN 7幀CNN 占比 1.8 0.2 95.6 93.5 89.8 85.1 81.1 72.7 下載: 導(dǎo)出CSV
-
朱偉. 米波數(shù)字陣列雷達(dá)低仰角測高方法研究[D]. [博士論文], 西安電子科技大學(xué), 2013.ZHU Wei. Study on low-angle altitude measurement in VHF Radar[D]. [Ph.D. dissertation], Xidian University, 2013. 鄭軼松. 米波陣列雷達(dá)低仰角測高若干問題研究[D]. [博士論文], 西安電子科技大學(xué), 2017.ZHENG Yisong. Study on some issues of low-angle altitude measurement for VHF array radar[D]. [Ph.D. dissertation], Xidian University, 2017. 李存勖. 米波雷達(dá)低仰角測高相關(guān)問題研究[D]. [博士論文], 西安電子科技大學(xué), 2018.LI Cunxu. Study on some issues of altitude measurement of low-angle target for VHF array radar[D]. [Ph.D. dissertation], Xidian University, 2018. 陳伯孝, 胡鐵軍, 鄭自良, 等. 基于波瓣分裂的米波雷達(dá)低仰角測高方法及其應(yīng)用[J]. 電子學(xué)報, 2007, 35(6): 1021–1025. doi: 10.3321/j.issn:0372-2112.2007.06.003CHEN Baixiao, HU Tiejun, ZHENG Ziliang, et al. Method of altitude measurement based on beam Split in VHF radar and its application[J]. Acta Electronica Sinica, 2007, 35(6): 1021–1025. doi: 10.3321/j.issn:0372-2112.2007.06.003 ZHU Wei and CHEN Baixiao. Altitude measurement based on terrain matching in VHF array radar[J]. Circuits, Systems, and Signal Processing, 2013, 32(2): 647–662. doi: 10.1007/s00034-012-9472-4 鄭軼松, 陳伯孝. 米波雷達(dá)低仰角目標(biāo)多徑模型及其反演方法研究[J]. 電子與信息學(xué)報, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013ZHENG Yisong and CHEN Baixiao. Multipath model and inversion method for low-angle target in very high frequency radar[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1468–1474. doi: 10.11999/JEIT151013 SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830 ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276 ZISKIND I and WAX M. Maximum likelihood localization of multiple sources by alternating projection[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(10): 1553–1560. doi: 10.1109/29.7543 CHOI Y H. Alternating projection for maximum-likelihood source localization using eigendecomposition[J]. IEEE Signal Processing Letters, 1999, 6(4): 73–75. doi: 10.1109/97.752057 WU Bo, LI Kehuang, GE Fengpei, et al. An end-to-end deep learning approach to simultaneous speech dereverberation and acoustic modeling for robust speech recognition[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(8): 1289–1300. doi: 10.1109/JSTSP.2017.2756439 WU Bo, LI Kehuang, YANG Minglei, et al. A reverberation-time-aware approach to speech dereverberation based on deep neural networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2017, 25(1): 102–111. doi: 10.1109/TASLP.2016.2623559 XIANG Houhong, CHEN Baixiao, YANG Minglei, et al. Altitude measurement based on characteristics reversal by deep neural network for VHF radar[J]. IET Radar, Sonar & Navigation, 2019, 13(1): 98–103. doi: 10.1049/iet-rsn.2018.5121 WU Liuli and HUANG Zhitao. Coherent SVR learning for wideband direction-of-arrival estimation[J]. IEEE Signal Processing Letters, 2019, 26(4): 642–646. doi: 10.1109/LSP.2019.2901641 WERBOS P J. Backpropagation through time: What it does and how to do it[J]. Proceedings of the IEEE, 1990, 78(10): 1550–1560. doi: 10.1109/5.58337 LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541–551. doi: 10.1162/neco.1989.1.4.541 KINGMA D P and BA J. Adam: A method for stochastic optimization[J]. arXiv: 2014, 1412.6980. SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929–1958. -