二維相控陣-MIMO雷達(dá)聯(lián)合發(fā)射子陣劃分和波束形成設(shè)計(jì)方法
doi: 10.11999/JEIT190429 cstr: 32379.14.JEIT190429
-
西安電子科技大學(xué)雷達(dá)信號(hào)處理國(guó)家重點(diǎn)實(shí)驗(yàn)室 西安 710071
Joint Transmitting Subarray Partition and Beamforming Design Method Based on Two-Dimensional Phased-MIMO Radar
-
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
摘要:
為了有效地抑制干擾信號(hào)并進(jìn)一步提高雷達(dá)系統(tǒng)的性能,該文提出一種基于2維相控陣-MIMO雷達(dá)的聯(lián)合發(fā)射子陣劃分和波束形成設(shè)計(jì)方法。該方法首先將MIMO雷達(dá)系統(tǒng)的發(fā)射陣列等分成一定數(shù)目的非重疊子陣并給每個(gè)天線分配相同的發(fā)射能量,以確保發(fā)射信號(hào)具有恒模特性;其次,在一定的約束條件下,以最大化接收波束形成器的輸出信干噪比為準(zhǔn)則建立關(guān)于子陣結(jié)構(gòu)、每個(gè)子陣對(duì)應(yīng)的發(fā)射波束形成權(quán)矢量以及接收波束形成權(quán)矢量的優(yōu)化模型,并采用循環(huán)迭代方法進(jìn)行求解。仿真結(jié)果證實(shí)了所提方法的正確性和有效性。
-
關(guān)鍵詞:
- 相控陣-MIMO雷達(dá) /
- 干擾抑制 /
- 發(fā)射子陣劃分 /
- 波束形成
Abstract:In order to suppress effectively the interference signal and improve further the performance of radar system, a joint transmitting subarray partition and beamforming design method based on two-dimensional phased-MIMO radar is proposed. Firstly, the transmitting array of MIMO radar system is equally partitioned into a number of non-overlapping subarrays and the transmit power of each antenna is equal, so as to guarantee that the transmit signal has constant modulus characteristic. Then, the optimization model for subarray structure of transmitting array, transmit beamformer weight vectors and receive beamformer weight vector is established by maximizing the output signal-to-interference-plus-noise ratio of the receive beamformer under certain constraint conditions. Simulation results demonstrate the correctness and effectiveness of the proposed method.
-
表 1 循環(huán)迭代算法流程
初始化:初始化子陣個(gè)數(shù)$K$,目標(biāo)空間位置$({\theta _0},{\phi _0})$和散射系數(shù)${\gamma _0}$, $Q$個(gè)依賴于雷達(dá)系統(tǒng)發(fā)射波形的干擾的空間位置$\{ ({\theta _q},{\phi _q})\} _{q = 1}^Q$和散射
系數(shù)$\{ {\gamma _q}\} _{q = 1}^Q$, $P$個(gè)不依賴于雷達(dá)系統(tǒng)發(fā)射波形的干擾的空間位置$\{ ({\theta _p},{\phi _p})\} _{p = 1}^P$和功率$\{ \gamma _p^2\} _{p = 1}^P$,子陣結(jié)構(gòu)${{{F}}^0}$,發(fā)射波束形成權(quán)矢量
$\{ \bar {{w}}_k^0\} _{k = 1}^K$,系統(tǒng)發(fā)射總能量$\eta $,終止閾值$\beta $;步驟 1 固定子陣結(jié)構(gòu)${{{F}}^v}$和發(fā)射波束形成權(quán)矢量$\{ \bar {{w}}_k^v\} _{k = 1}^K$,根據(jù)式(19)計(jì)算接收波束形成權(quán)矢量${{{g}}^{v + 1}}$; 步驟 2 固定子陣結(jié)構(gòu)${{{F}}^v}$和接收波束形成權(quán)矢量${{{g}}^{v + 1}}$,根據(jù)式(24)計(jì)算發(fā)射波束形成權(quán)矢量$\{ \bar {{w}}_k^{v + 1}\} _{k = 1}^K$; 步驟 3 固定發(fā)射波束形成權(quán)矢量$\{ \bar {{w}}_k^{v + 1}\} _{k = 1}^K$和接收波束形成權(quán)矢量${{{g}}^{v + 1}}$,根據(jù)式(29)和式(30)計(jì)算子陣結(jié)構(gòu)${{{F}}^{v + 1}}$; 步驟 4 判斷終止條件$|{\rm{SIN} }{ {\rm{R} }^{v + 1} } - {\rm{SIN} }{ {\rm{R} }^v}| \le \beta $是否滿足,滿足則終止,否則令$v = v+1$并重復(fù)步驟1至步驟4。 下載: 導(dǎo)出CSV
-
申濱, 趙書(shū)鋒, 金純. 基于迭代并行干擾消除的低復(fù)雜度大規(guī)模MIMO信號(hào)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111SHEN Bin, ZHAO Shufeng, and JIN Chun. Low complexity iterative parallel interference cancellation detection algorithms for massive MIMO systems[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2970–2978. doi: 10.11999/JEIT180111 李慧, 趙永波, 程增飛. 基于線性調(diào)頻時(shí)寬的MIMO雷達(dá)正交波形設(shè)計(jì)[J]. 電子與信息學(xué)報(bào), 2018, 40(5): 1151–1158. doi: 10.11999/JEIT170426LI Hui, ZHAO Yongbo, and CHENG Zengfei. MIMO radar orthogonal waveform set design based on chirp durations[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1151–1158. doi: 10.11999/JEIT170426 王昊, 馬啟明. 修正主模抑制穩(wěn)健自適應(yīng)波束形成算法[J]. 電子與信息學(xué)報(bào), 2017, 39(11): 2620–2626. doi: 10.11999/JEIT170236WANG Hao and MA Qiming. Modified dominant mode rejection robust adaptive beamforming algorithm[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2620–2626. doi: 10.11999/JEIT170236 ZHOU Gongjian, GUO Zhengkun, CHEN Xi, et al. Statically fused converted measurement kalman filters for phased-array radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 554–568. doi: 10.1109/TAES.2017.2760798 XIONG Jie, WANG Wenqin, and GAO Kuandong. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. doi: 10.1109/TAES.2017.2756498 HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation for MIMO SAR system via fast interferometry RPCA method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1774–1787. doi: 10.1109/TGRS.2017.2768243 王宇卓, 朱圣棋, 許京偉. MIMO雙基地機(jī)載雷達(dá)距離模糊雜波抑制方法[J]. 雷達(dá)學(xué)報(bào), 2018, 7(2): 202–211. doi: 10.12000/JR18016WANG Yuzhuo, ZHU Shengqi, and XU Jingwei. A range-ambiguous clutter suppression method for MIMO bistatic airborne radar[J]. Journal of Radars, 2018, 7(2): 202–211. doi: 10.12000/JR18016 施君南, 糾博, 劉宏偉, 等. 一種基于先驗(yàn)信息的機(jī)載MIMO雷達(dá)發(fā)射方向圖設(shè)計(jì)方法[J]. 電子與信息學(xué)報(bào), 2015, 37(5): 1038–1043. doi: 10.11999/JEIT140911SHI Junnan, JIU Bo, LIU Hongwei, et al. A beampattern design method for airborne MIMO radar based on prior information[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1038–1043. doi: 10.11999/JEIT140911 BERGIN J, MCNEIL S, FOMUNDAM L, et al. MIMO phased-array for SMTI radar[C]. 2018 IEEE Aerospace Conference, Big Sky, USA, 2008: 1–7. doi: 10.1109/AERO.2008.4526416. HASSANIEN A and VOROBYOV S A. Why the phased-MIMO radar outperforms the phased-array and MIMO radars[C]. The 18th European Signal Processing Conference, Aalborg, Denmark, 2010: 1234–1238. doi: 10.5281/zenodo.42010. HASSANIEN A and VOROBYOV S A. Phased-MIMO radar: A tradeoff between phased-array and MIMO radars[J]. IEEE Transactions on Signal Processing, 2010, 58(6): 3137–3151. doi: 10.1109/TSP.2010.2043976 LI Hongbin and HIMED B. Transmit subaperturing for MIMO radars with co-located antennas[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1): 55–65. doi: 10.1109/JSTSP.2009.2038967 DELIGIANNIS A, LAMBOTHARAN S, and CHAMBERS J A. Beamforming for fully-overlapped two-dimensional Phased-MIMO radar[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 599–604. doi: 10.1109/RADAR.2015.7131068. KHAN W, QURESHI I M, and SULTAN K. Ambiguity function of phased-MIMO radar with colocated antennas and its properties[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(7): 1220–1224. doi: 10.1109/LGRS.2013.2290010 MILLER S L and O'DEA R J. Peak power and bandwidth efficient linear modulation[J]. IEEE Transactions on Communications, 1998, 46(12): 1639–1648. doi: 10.1109/26.737402 ALIELDIN A, HUANG Yi, and SAAD W M. Optimum partitioning of a phased-MIMO radar array antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2287–2290. doi: 10.1109/LAWP.2017.2714866 LUO Zhiquan, MA W, SO A M C, et al. Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27(3): 20–34. doi: 10.1109/MSP.2010.936019 GRANT M and BOYD S. CVX: Matlab software for disciplined convex programming, version 2.2[OL]. http://cvxr.com/cvx, 2020. BOYD S and VANDENBERGHE L. Convex Optimization[M]. Cambridge: Cambridge University Press, 2004: 291–342. HELMBERG C and RENDL F. Solving quadratic (0, 1)-problems by semidefinite programs and cutting planes[J]. Mathematical Programming, 1998, 82(3): 291–315. doi: 10.1007/bf01580072 -