應(yīng)用于激光雷達(dá)信號處理系統(tǒng)的放大電路接口設(shè)計
doi: 10.11999/JEIT190427 cstr: 32379.14.JEIT190427
-
中國科學(xué)院微電子研究所 北京 100094
Amplifying Circuit Interface Model for LiDAR Signal Processing Systems
-
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100094, China
-
摘要:
應(yīng)用于激光雷達(dá)(LiDAR)測量系統(tǒng)的單芯片全集成信號處理電路系統(tǒng)的設(shè)計與實(shí)現(xiàn),對于有效提高激光雷達(dá)整機(jī)測量精度、數(shù)據(jù)率,縮短測量時間,減小測量設(shè)備體積和功耗具有重要的意義。考慮到目前對于信號處理電路系統(tǒng)的研究中較少考慮芯片在實(shí)際使用環(huán)境中的接口問題,基于光電探測器、裸芯片、封裝、傳輸線及測試板等諸多接口影響因素,運(yùn)用協(xié)同仿真分析的方法,在電路系統(tǒng)的實(shí)際工作頻段內(nèi),建立了一種精確的、能反映激光雷達(dá)信號處理電路系統(tǒng)放大電路芯片真實(shí)應(yīng)用環(huán)境的接口一體化仿真模型,并通過S參數(shù)仿真對其進(jìn)行驗(yàn)證。同時基于CMOS工藝,將設(shè)計得到的放大電路系統(tǒng)進(jìn)行流片,在芯片輸入端承載不同光電探測器寄生負(fù)載的情況下,對芯片性能進(jìn)行測試,仿真結(jié)果與測試結(jié)果吻合較好,驗(yàn)證了該接口模型建立的可行性。
-
關(guān)鍵詞:
- 激光雷達(dá) /
- 放大電路系統(tǒng) /
- 接口建模 /
- 協(xié)同仿真
Abstract:The monolithic signal processing circuit system for Light Detection And Ranging (LiDAR) measurement has significant practical values in terms of improving LiDAR measurement accuracy and data rate, shortening measurement time, and reducing equipment size and power consumption. As the environment interface problem is less considered, the appropriate input interface model must be established to break through the technology difficulty to associate circuit system with photodetectors, die chip, package, transmission line, test board and so on in the operating frequency range. By the combination of theoretical analysis and model simulation, the real working environment of circuit systemfor LiDAR signal processing can be simulated reasonably. Furthermore, based on CMOS technology, the signal processing circuit chip is tested with different photodetector parasitic capacitances. The well agreements between simulation and the testing results validate the feasibility of the input interface model.
-
XUE Zhaofeng, LI Zhiqun, WANG Zhigong, et al. A low noise, 1.25 Gb/s front-end amplifier for optical receivers[J]. Chinese Journal of Semiconductors, 2006, 27(8): 1373–1377. WANG Yangjie, KHAN M Z, and RAUT R. A fully differential CMOS limiting amplifier with active inductor for optical receiver[C]. 2005 Canadian Conference on Electrical and Computer Engineering, Saskatoon, Canada, 2005: 1751–1754. LIU Jinbin, GU Ming, CHEN Hongda, et al. A CMOS front-end circuit for SONET OC-96 receiver[C]. 2006 International Conference on Communications, Circuits and Systems, Guilin, China, 2006: 1961–1965. HUANG Hueiyan, CHIEN Junchau, and LU Lianghung. A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback[J]. IEEE Journal of Solid-State Circuits, 2007, 42(5): 1111–1120. doi: 10.1109/JSSC.2007.894819 博耀威, 孟憲佳. 光電子集成芯片技術(shù)發(fā)展現(xiàn)狀與趨勢[J]. 科技中國, 2017(8): 1–3. doi: 10.3969/j.issn.1673-5129.2017.08.002BO Yaowei and MENG Xianjia. Development status and trend of optoelectronic integrated chip technology[J]. China SciTechnology Business, 2017(8): 1–3. doi: 10.3969/j.issn.1673-5129.2017.08.002 廣東省政府發(fā)展研究中心創(chuàng)新產(chǎn)業(yè)研究處. 廣東集成電路(芯片)產(chǎn)業(yè)發(fā)展研究報告[J]. 廣東經(jīng)濟(jì), 2018(11): 6–27.Innovation Industry Research Office of Guangdong Provincial Government Development Research Center. Research report on the development of integrated circuit (chip) industry in Guangdong[J]. Guangdong Economy, 2018(11): 6–27. 丁春南, 葉茂, 夏顯召, 等. 面向LiDAR應(yīng)用的APD單片前端讀出電路設(shè)計[J]. 紅外與激光工程, 2019, 48(S1): S106004.DING Chunnan, YE Mao, XIA Xianzhao, et al. Monolithic front-end readout circuit for LiDAR using APD detector[J]. Infrared and Laser Engineering, 2019, 48(S1): S106004. 陳肖, 周東. APD陣列激光成像雷達(dá)處理電路的研究進(jìn)展[J]. 激光與紅外, 2015, 45(9): 1018–1022. doi: 10.3969/j.issn.1001-5078.2015.09.002CHEN Xiao and ZHOU Dong. Development of processing circuit of laser imaging radar based on APD array[J]. Laser &Infrared, 2015, 45(9): 1018–1022. doi: 10.3969/j.issn.1001-5078.2015.09.002 高科, 孫晶華. 光電探測器前置放大電路研究[J]. 微型機(jī)與應(yīng)用, 2011, 30(18): 86–88. doi: 10.3969/j.issn.1674-7720.2011.18.031GAO Ke and SUN Jinghua. Research in the front end circuit of photo-electric detector[J]. Microcomputer &Its Applications, 2011, 30(18): 86–88. doi: 10.3969/j.issn.1674-7720.2011.18.031 ZHI yangxiang. Research on laser ranging technology based on flight time[D]. [Master dissertation] Shaanxi Normal Universit. 鄭銳. 15 Gb/s CMOS單片集成并行傳輸光接收前端放大器設(shè)計[D]. [碩士論文], 東南大學(xué), 2006.ZHENG Rui. 15 Gb/s CMOS monolithic parallel front-end amplifier for optical receiver design[D]. [Master dissertation], Southeast University, 2006. 李久, 何進(jìn), 童志強(qiáng), 等. 10Gb/s光接收機(jī)跨阻前置放大器芯片設(shè)計研究[J]. 半導(dǎo)體光電, 2017, 38(4): 562–565.LI Jiu, HE Jin, TONG Zhiqiang, et al. Study on design of the transimpedance preamplifier chip for 10 Gb/s optical receiver[J]. Semiconductor Optoelectronics, 2017, 38(4): 562–565. TIAN guangkun,Fan rudong, et al. High speed circuit PCB design and EMC Technology Analysis[M]. Beijing: Electronic Industry Press: 65–67 陳佳楠. 共面波導(dǎo)及微帶線彎曲結(jié)構(gòu)的時域仿真與研究[D]. [碩士論文], 南京郵電大學(xué), 2015.CHEN Jianan. Time domain simulation and study of bending coplanar waveguide and microstrip[D]. [Master dissertation], Nanjing University of Posts and Telecommunications, 2015. 鮮飛. QFN封裝元件組裝工藝技術(shù)研究[J]. 電子元件與材料, 2005, 24(11): 52–55. doi: 10.3969/j.issn.1001-2028.2005.11.018XIAN Fei. Research on QFN soldering and assembly[J]. Electronic Components &Materials, 2005, 24(11): 52–55. doi: 10.3969/j.issn.1001-2028.2005.11.018 史建衛(wèi). QFN封裝元件組裝及質(zhì)量控制工藝[J]. 電子工業(yè)專用設(shè)備, 2015(2): 21–30. doi: 10.3969/j.issn.1004-4507.2015.02.007SHI Jianwei. QFN packing device assembly and quality control process[J]. Equipment for Electronic Products Manufacturing, 2015(2): 21–30. doi: 10.3969/j.issn.1004-4507.2015.02.007 曾耿華, 唐高弟. 微波多芯片組件中鍵合線的參數(shù)提取和優(yōu)化[J]. 信息與電子工程, 2007, 5(1): 40–43. doi: 10.3969/j.issn.1672-2892.2007.01.009ZENG Genghua and TANG Gaodi. Parameters extraction and optimization of bondwire in MMCM[J]. Information and Electronic Engineering, 2007, 5(1): 40–43. doi: 10.3969/j.issn.1672-2892.2007.01.009 Thorlabs products[EB/OL]. https://www.thorlabschina.cn/navigation.cfm?guide_id=36, 2019. First Sensor products[EB/OL]. https://www.first-sensor.com/cn/products/optical-sensors/detectors/avalanche-photodiodes-apd/, 2019. -