基于強散射點在線估計的距離擴展目標檢測方法
doi: 10.11999/JEIT190417 cstr: 32379.14.JEIT190417
-
1.
西安電子科技大學(xué)雷達信號處理國家重點實驗室 西安 710071
-
2.
西安電子工程研究所 西安 710100
Range Spread Target Detection Based on OnlineEstimation of Strong Scattering Points
-
1.
National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
-
2.
Xi'an Electronic Engineering Research Institute, Xi’an 710100, China
-
摘要:
傳統(tǒng)的距離擴展目標檢測一般在散射點密度或散射點數(shù)量先驗條件下完成,在目標散射點信息完全未知時檢測性能會大幅降低。針對這個問題,該文提出一種基于強散射點在線估計的距離擴展目標檢測方法(OESS-RSTD),該方法利用機器學(xué)習(xí)中的無監(jiān)督聚類算法在線估計強散射點數(shù)量以及首次檢測門限,然后再結(jié)合虛警率,確定2次檢測門限,最后通過兩次門限檢測完成目標有無的判決。該文分別利用仿真數(shù)據(jù)和實測數(shù)據(jù)進行了試驗驗證,并和其他算法進行了試驗對比,通過虛警概率一定時的信噪比(SNR)-檢測概率曲線驗證了該文所提方法相對于傳統(tǒng)算法有更高的穩(wěn)健性,且該方法不需要目標散射點的任何先驗信息。
Abstract:The traditional range-extended target detection is usually completed under the condition of scattering point density or scattering point number priori. The detection performance is greatly reduced when the scattering point information of the target is completely unknown. To solve this problem, a Range Spread Target Detection method based on Online Estimation of Strong Scattering(OESS-RSTD) points is proposed. Firstly, the unsupervised clustering algorithm in machine learning is used to estimate the number of strong scattering points and the first detection threshold adaptively. Then, the second detection threshold is determined according to false alarm rate. Finally, the existence of the target is determined through two detection thresholds. The simulation data and the measured data are used to verify and compare with other algorithms. By comparing the Signal-to-Noise Ratio (SNR) -detection probability curves of various methods with a given false alarm probability, it is verified that the proposed method has higher robustness than the traditional algorithm, and the method does not need any priori information of target scattering points.
-
表 1 4種典型散射點模型
編號 散射點分布特點 名稱 模型1 1個強散射點,占全部能量 單散射點 模型2 10個散射點,一個強散射點占50%能量,其他散射點占各占5.556%能量 稀疏多散射點 模型3 32個散射點,兩個強散射點各占25%,其他散射點占各占1.66%能量 密集非均勻多散射點 模型4 32個散射點,均勻分布,各占3.125%能量 密集均勻散射點 下載: 導(dǎo)出CSV
-
JIANG Yuan, LI Yang, CAI Jinjian, et al. Robust automatic target recognition via HRRP sequence based on scatterer matching[J]. Sensors, 2018, 18(2): No. 593, 1–19. doi: 10.3390/s18020593 DANIYAN A, LAMBOTHARAN S, DELIGIANNIS A, et al. Bayesian multiple extended target tracking using labeled random finite Sets and Splines[J]. IEEE Transactions on Signal Processing, 2018, 66(22): 6076–6091. doi: 10.1109/TSP.2018.2873537 HU Qi, JI Hongbing, and ZHANG Yongquan. Tracking of maneuvering non-ellipsoidal extended target with varying number of sub-objects[J]. Mechanical Systems and Signal Processing, 2018, 99: 262–284. doi: 10.1016/j.ymssp.2017.06.013 HUGHES P K. A high-resolution radar detection strategy[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(5): 663–667. doi: 10.1109/TAES.1983.309368 GERLACH K and STEINER M J. Adaptive detection of range distributed targets[J]. IEEE Transactions on Signal Processing, 1999, 47(7): 1844–1851. doi: 10.1109/78.771034 顧新鋒, 簡濤, 何友. 距離擴展目標的雙門限恒虛警檢測器及性能分析[J]. 電子與信息學(xué)報, 2012, 34(6): 1318–1323. doi: 10.3724/SP.J.1146.2011.01094GU Xinfeng, JIAN Tao, and HE You. Double threshold CFAR detector of range-spread target and its performance analysis[J]. Journal of Electronics &Information Technology, 2012, 34(6): 1318–1323. doi: 10.3724/SP.J.1146.2011.01094 ROUFFET T, VALLET P, GRIVEL E, et al. Analysis of a GLRT for the detection of an extended target[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–5. doi: 10.1109/RADAR.2016.7485281. LIU Jun, LIU Weijian, TANG Bo, et al. Distributed target detection exploiting persymmetry in Gaussian clutter[J]. IEEE Transactions on Signal Processing, 2019, 67(4): 1022–1033. doi: 10.1109/TSP.2018.2887405 高彥釗, 占榮輝, 萬建偉. KK分布雜波下的距離擴展目標檢測算法[J]. 國防科技大學(xué)學(xué)報, 2015, 37(1): 118–124. doi: 10.11887/j.cn.201501020GAO Yanzhao, ZHAN Ronghui, and WAN Jianwei. Range-spread target detection in KK-distributed clutter[J]. Journal of National University of Defense Technology, 2015, 37(1): 118–124. doi: 10.11887/j.cn.201501020 戴奉周, 劉宏偉, 吳順君. 一種基于順序統(tǒng)計量的距離擴展目標檢測器[J]. 電子與信息學(xué)報, 2009, 31(10): 2488–2492.DAI Fengzhou, LIU Hongwei, and WU Shunjun. Order-statistic-based detector for range spread target[J]. Journal of Electronics &Information Technology, 2009, 31(10): 2488–2492. LONG Teng, ZHENG Le, LI Yang, et al. Improved double threshold detector for spatially distributed target[J]. IEICE Transactions on Communications, 2012, E95.B(4): 1475–1478. doi: 10.1587/transcom.e95.b.1475 陳新亮, 王麗, 柳樹林, 等. 高分辨雷達擴展目標檢測算法研究[J]. 中國科學(xué): 信息科學(xué), 2012, 42(8): 1007–1018. doi: 10.1360/112011-457CHEN Xinliang, WANG Li, LIU Shulin, et al. Research on extended target detection for high resolution radar[J]. Scientia Sinica Informationis, 2012, 42(8): 1007–1018. doi: 10.1360/112011-457 LONG Teng, LIANG Zhennan, and LIU Quanhua. Advanced technology of high-resolution radar: Target detection, tracking, imaging, and recognition[J]. Science China Information Sciences, 2019, 62(4): 40301. doi: 10.1007/s11432-018-9811-0 XU Shuwen, SHI Xingyu, XUE Jian, et al. Maneuvering range-spread target detection in white Gaussian noise using multiple-pulse combined waveform contrast[C]. 2017 IEEE International Conference on Signal Processing, Communications and Computing, Xiamen, China, 2017: 1–5. doi: 10.1109/ICSPCC.2017.8242373. ARTHUR D and VASSILVITSKII S. k-means++: The advantages of careful seeding[C]. The 18th Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007: 1027–1035. KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-Means clustering algorithm: Analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881–892. doi: 10.1109/tpami.2002.1017616 CHEN YEWANG, TANG SHENGYU, BOUGUILA N, et al. A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data[J]. Pattern Recognition, 2018, 83: 375–387. doi: 10.1016/j.patcog.2018.05.030 NGUYEN B and DE BAETS B. Kernel-based distance metric learning for supervised k-Means clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10): 3084–3095. doi: 10.1109/TNNLS.2018.2890021 -