帶有卸載壓縮激勵(lì)的云增強(qiáng)FiWi網(wǎng)絡(luò)節(jié)能機(jī)制
doi: 10.11999/JEIT190405 cstr: 32379.14.JEIT190405
-
1.
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
-
2.
重慶高校市級(jí)光通信與網(wǎng)絡(luò)重點(diǎn)實(shí)驗(yàn)室 重慶 400065
-
3.
泛在感知與互聯(lián)重慶市重點(diǎn)實(shí)驗(yàn)室 重慶 400065
Energy Saving Mechanism with Incentive of Offloading Compression in Cloudlet Enhanced Fiber-Wireless Network
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Key Laboratory of Optical Communication and Networks, Chongqing 400065, China
-
3.
Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China
-
摘要:
針對(duì)云增強(qiáng)型光纖-無(wú)線(FiWi)網(wǎng)絡(luò)能耗以及卸載的通信開(kāi)銷過(guò)大問(wèn)題,該文提出一種自適應(yīng)卸載壓縮節(jié)能機(jī)制(ESAOC),針對(duì)不同類型的業(yè)務(wù)屬性和最大的容忍時(shí)延,結(jié)合光網(wǎng)絡(luò)單元的負(fù)載變化和無(wú)線網(wǎng)狀網(wǎng)的流量情況,通過(guò)統(tǒng)計(jì)的方式獲得不同優(yōu)先級(jí)卸載數(shù)據(jù)的平均到達(dá)率,再結(jié)合各個(gè)節(jié)點(diǎn)的壓縮時(shí)延,動(dòng)態(tài)調(diào)整業(yè)務(wù)的卸載壓縮比,以降低卸載的通信開(kāi)銷;同時(shí),建立排隊(duì)模型分析卸載業(yè)務(wù)在MEC服務(wù)器的排隊(duì)時(shí)延,協(xié)同調(diào)度無(wú)線側(cè)中繼節(jié)點(diǎn),進(jìn)而對(duì)光網(wǎng)絡(luò)單元和終端設(shè)備進(jìn)行協(xié)同休眠調(diào)度,最大化休眠時(shí)長(zhǎng),提高系統(tǒng)能源效率。結(jié)果表明,所提方法在有效降低整個(gè)網(wǎng)絡(luò)能耗的同時(shí)能夠保證卸載業(yè)務(wù)的時(shí)延性能。
-
關(guān)鍵詞:
- 光纖-無(wú)線網(wǎng)絡(luò) /
- 自適應(yīng)卸載壓縮 /
- 協(xié)同休眠 /
- 節(jié)能
Abstract:In cloudlet enhanced Fiber-Wireless (FiWi) network, there is a problem that energy consumption and communication overhead of offloading are too large. An Energy Saving mechanism with Adaptive Offloading Compression (ESAOC) is proposed. According to the different types of service attributes and the maximum tolerant delay, combined with the load changes of the optical network unit and the traffic of the wireless mesh network, the ratio of the offloading compression of service is dynamically adjusted to reduce the communication overhead of the offloading by the average arrival rate of the offloaded data of different priorities obtained by means of statistical methods and combined with the delay of compression of each node. At the same time, a queuing model is established to analyze the delay of the offloading service in the MEC server and cooperatively schedule the relay node in wireless mesh network, thereby performing the schedule of collaborative sleeping on the optical network units and the terminal devices to maximize the duration of sleeping and improving the energy efficiency of system. The results show that the proposed mechanism can effectively reduce the network energy consumption while ensuring the delay performance of offloading service.
-
表 1 仿真參數(shù)設(shè)置
參數(shù)設(shè)定 參數(shù)數(shù)值 網(wǎng)絡(luò)區(qū)域(m2) 500×500 ONU數(shù)目N(個(gè)) 8 Mesh節(jié)點(diǎn)數(shù)目${N_w}$(個(gè)) 20 STA數(shù)目W(個(gè)) 50 ONU活躍狀態(tài)能耗(W) 5.05 ONU休眠狀態(tài)能耗(W) 0.75 平均卸載分組大小(kb) 128.5 節(jié)點(diǎn)處理能力$\tau $(ns/b) 0.35 壓縮參數(shù)$\beta $ 5 壓縮能耗系數(shù)$\varepsilon $(nJ/b) 8 ${R_{\rm{mes} }}$(Mbit/s) 6900 ${R_{\rm{O}} }$(Gbit/s) 1 ${T_{\rm{O} \to {\rm{M}} }}$(μs) 50 ONU保護(hù)時(shí)隙(μs) 40 控制幀時(shí)隙(μs) 0.5 ${\xi _0}$(cycles/bit) 500 ${f_0}$(cycles/s) $3.2 \times {10^9}$ 下載: 導(dǎo)出CSV
-
吳大鵬, 李雪, 李紅霞. 基于TWDM-PON與C-RAN的QoE感知視頻協(xié)作緩存與傳輸機(jī)制[J]. 通信學(xué)報(bào), 2019, 40(3): 80–91. doi: 10.11959/j.issn.1000-436x.2019066WU Dapeng, LI Xue, and LI Hongxia. QoE-aware video cooperative caching and transmission mechanism based on TWDM-PON and C-RAN[J]. Journal on Communications, 2019, 40(3): 80–91. doi: 10.11959/j.issn.1000-436x.2019066 王汝言, 徐寧寧, 吳大鵬. 能耗和時(shí)延感知的虛擬化云無(wú)線接入網(wǎng)絡(luò)資源分配機(jī)制[J]. 電子與信息學(xué)報(bào), 2019, 41(1): 83–90. doi: 10.11999/JEIT180063WANG Ruyan, XU Ningning, and WU Dapeng. Energy consumption and delay-aware resource allocation mechanism for virtualization cloud radio access network[J]. Journal of Electronics &Information Technology, 2019, 41(1): 83–90. doi: 10.11999/JEIT180063 AGIWAL M, ROY A, and SAXENA N. Next generation 5G wireless networks: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18(3): 1617–1655. doi: 10.1109/COMST.2016.2532458 XU Yi and MAO Shiwen. A survey of mobile cloud computing for rich media applications[J]. IEEE Wireless Communications, 2013, 20(3): 46–53. doi: 10.1109/MWC.2013.6549282 吳大鵬, 吳光鍇, 王汝言. 帶有上行數(shù)據(jù)幀聚合的光無(wú)線融合接入網(wǎng)絡(luò)節(jié)能機(jī)制[J]. 電子與信息學(xué)報(bào), 2018, 40(3): 690–696. doi: 10.11999/JEIT170508WU Dapeng, WU Guangkai, and WANG Ruyan. Energy-saving mechanism of integrated fiber-wireless access network with uplink data frame aggregation[J]. Journal of Electronics &Information Technology, 2018, 40(3): 690–696. doi: 10.11999/JEIT170508 RIMAL B P, VAN D P, and MAIER M. Mobile edge computing empowered fiber-wireless access networks in the 5G era[J]. IEEE Communications Magazine, 2017, 55(2): 192–200. doi: 10.1109/MCOM.2017.1600156CM LI Xiaoyang, YOU Changsheng, ANDREEV S, et al. Wirelessly powered crowd sensing: Joint power transfer, sensing, compression, and transmission[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(2): 391–406. doi: 10.1109/JSAC.2018.2872379 KOLO J G, SHANMUGAM S A, LIM D W G, et al. Fast and efficient lossless adaptive compression scheme for wireless sensor networks[J]. Computers & Electrical Engineering, 2015, 41: 275–287. doi: 10.1016/j.compeleceng.2014.06.008 LIU Luning, CHEN Xin, LU Zhaoming, et al. Mobile-edge computing framework with data compression for wireless network in energy internet[J]. Tsinghua Science and Technology, 2019, 24(3): 271–280. doi: 10.26599/TST.2018.9010124 XU Ding, LI Qun, and ZHU Hongbo. Energy-saving computation offloading by joint data compression and resource allocation for mobile-edge computing[J]. IEEE Communications Letters, 2019, 23(4): 704–707. doi: 10.1109/LCOMM.2019.2897630 ZHANG Wei, WEN Yonggang, ZHANG Yingjun, et al. Mobile cloud computing with voltage scaling and data compression[C]. The 18th International Workshop on Signal Processing Advances in Wireless Communications, Sapporo, Japan, 2017: 1–5. doi: 10.1109/SPAWC.2017.8227788. REN Jinke, YU Guanding, CAI Yunlong, et al. Latency optimization for resource allocation in mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5506–5519. doi: 10.1109/TWC.2018.2845360 ALVI S A, ZHOU Xiangyun, and DURRANI S. Optimal compression and transmission rate control for node-lifetime maximization[J]. IEEE Transactions on Wireless Communications, 2018, 17(11): 7774–7788. doi: 10.1109/TWC.2018.2870870 HU Weizheng, ZHANG Wei, HU Han, et al. Toward joint compression-transmission optimization for green wearable devices: An energy-delay tradeoff[J]. IEEE Internet of Things Journal, 2017, 4(4): 1006–1018. doi: 10.1109/JIOT.2017.2704605 ZHAO Tianchu, ZHOU Sheng, GUO Xueying, et al. A cooperative scheduling scheme of local cloud and internet cloud for delay-aware mobile cloud computing[C]. 2015 IEEE Globecom Workshops, San Diego, USA, 2015: 1–6. doi: 10.1109/GLOCOMW.2015.7414063. LIU Yejun, GUO Lei, ZHANG Lincong, et al. A new integrated energy-saving scheme in green Fiber-Wireless (FiWi) access network[J]. Science China Information Sciences, 2014, 57(6): 1–15. doi: 10.1007/s11432-013-4958-7 RIMAL B P, VAN D P, and MAIER M. Mobile-edge computing vs. centralized cloud computing in fiber-wireless access networks[C]. 2016 IEEE Conference on Computer Communications Workshops, San Francisco, USA, 2016: 1–6. doi: 10.1109/INFCOMW.2016.7562226. CHOWDHURY M and MAIER M. Collaborative computing for advanced tactile internet human-to-robot (H2R) communications in integrated FiWi multirobot infrastructures[J]. IEEE Internet of Things Journal, 2017, 4(6): 2142–2158. doi: 10.1109/JIOT.2017.2761599 -