一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

面向無線通信的軌道角動量關鍵技術研究進展

廖希 周晨虹 王洋 廖莎莎 周繼華 張杰

廖希, 周晨虹, 王洋, 廖莎莎, 周繼華, 張杰. 面向無線通信的軌道角動量關鍵技術研究進展[J]. 電子與信息學報, 2020, 42(7): 1666-1677. doi: 10.11999/JEIT190372
引用本文: 廖希, 周晨虹, 王洋, 廖莎莎, 周繼華, 張杰. 面向無線通信的軌道角動量關鍵技術研究進展[J]. 電子與信息學報, 2020, 42(7): 1666-1677. doi: 10.11999/JEIT190372
Xi LIAO, Chenhong ZHOU, Yang WANG, Shasha LIAO, Jihua ZHOU, Jie ZHANG. A Survey of Orbital Angular Momentum in Wireless Communication[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1666-1677. doi: 10.11999/JEIT190372
Citation: Xi LIAO, Chenhong ZHOU, Yang WANG, Shasha LIAO, Jihua ZHOU, Jie ZHANG. A Survey of Orbital Angular Momentum in Wireless Communication[J]. Journal of Electronics & Information Technology, 2020, 42(7): 1666-1677. doi: 10.11999/JEIT190372

面向無線通信的軌道角動量關鍵技術研究進展

doi: 10.11999/JEIT190372 cstr: 32379.14.JEIT190372
基金項目: 國家自然科學基金(61801062, 61601073, 61801063),重慶市基礎科學與前沿技術研究項目(CSTC2017JCYJA0817),重慶郵電大學博士啟動基金(A2016-110)
詳細信息
    作者簡介:

    廖希:女,1988年生,講師,博士,研究方向為渦旋電磁波、電波傳播、射頻與微波電子學、信道建模等

    周晨虹:女,1996年生,碩士生,研究方向為軌道角動量產(chǎn)生與傳播

    王洋:男,1986年生,副教授,博士,研究方向為天線與傳播、雷達信號處理、無線通信等

    廖莎莎:女,1990年生,講師,博士,研究方向為微波光子學、硅光子學、射頻信號處理等

    周繼華:男,1979年生,研究員,博士,博士生導師,研究方向為移動網(wǎng)絡、無線通信、5G等

    張杰:男,1967年生,教授,博士,研究方向為渦旋電磁波、毫米波通信、智能環(huán)境建模與設計等

    通訊作者:

    廖希 liaoxi@cqupt.edu.cn

  • 中圖分類號: TN921

A Survey of Orbital Angular Momentum in Wireless Communication

Funds: The National Natural Science Foundation of China (61801062, 61601073, 61801063), The Chongqing Research Program of Basic Research and Frontier Technology (CSTC2017JCYJA0817), The Dr. Start-up Funding of Chongqing University of Posts and Telecommunications (A2016-110)
  • 摘要:

    電磁渦旋因攜帶軌道角動量而具有高維可調(diào)制自由度,被引入無線通信中以提升頻譜效率和抗干擾能力。該文首先介紹了軌道角動量和電磁渦旋的基本原理與特性;然后比較了電磁渦旋的產(chǎn)生方法,給出了超表面產(chǎn)生軌道角動量的工作原理,綜述了基于超表面的軌道角動量產(chǎn)生方法和研究現(xiàn)狀;總結了軌道角動量的傳輸性能、接收與檢測方法、復用與解復用性能;最后討論了未來在應用無線通信軌道角動量時需要解決的關鍵問題。

  • 圖  1  PEC-PMC超表面示意圖

    圖  2  實驗測量裝置圖

    圖  3  環(huán)形孔超表面示意圖

    圖  4  超表面的幾何結構俯視圖

    圖  5  多徑信道系統(tǒng)模型示意圖

    圖  6  OAM多徑效應鏡面反射模型示意圖[47]

    圖  7  OAM-MDM系統(tǒng)示意圖

    圖  8  復用與解復用示意圖

    圖  9  天線UCA示意圖

    表  1  電磁渦旋特性

    特性基本原理潛在應用
    正交性任意兩個整數(shù)階模態(tài)的OAM波束互相正交,構成無窮維希爾伯特空間提升系統(tǒng)頻譜效率
    發(fā)散性隨著距離和OAM階數(shù)的增加,OAM波束發(fā)散程度加劇
    穩(wěn)定性OAM的相位結構與傳輸距離無關[26];當拓撲電荷為整數(shù)時相位奇點處場強為零,并且隨著傳播距離增加,中心對稱的場強分布保持穩(wěn)定。實現(xiàn)長距離傳輸
    反射性OAM渦旋波束經(jīng)過鏡面反射只改變旋轉方向不影響波前相位結構有利于分析多徑效應
    對傳輸系統(tǒng)的影響
    安全性受到角度限制和橫向偏移的影響,在傳輸過程中對信號的抽樣檢測存在不確定性[9],可有效防止信息被竊取。更高編碼強度,實現(xiàn)高容量高保密性通信[27]
    多維量子糾纏單光子或糾纏光子可用于量子信息處理,非整數(shù)模態(tài)OAM模態(tài)可以分解為整數(shù)OAM模態(tài)的線性疊加;糾纏的量子態(tài)不可分離[28]。
    下載: 導出CSV

    表  2  典型OAM產(chǎn)生方法與分類

    產(chǎn)生方式生成原理典型代表優(yōu)缺點應用
    透射光柵結構利用干涉條紋產(chǎn)生的交叉錯位結果得到的叉形光柵生成相位全息圖,結合計算機仿真數(shù)據(jù)制作相位全息面。空間光調(diào)制器成本低、轉換速度快、可工作在任意頻率、系統(tǒng)復雜度較低;但是僅能實現(xiàn)單模態(tài)和非純模態(tài)的生成、器件實現(xiàn)較復雜。可用于毫米波頻段產(chǎn)生OAM波束,通過空間復用提高頻譜效率。
    透射螺旋結構波束透過厚度$h$隨中心旋轉方位角$\phi $比例變化的相位板,產(chǎn)生相位差隨厚度變化的透射電磁波。單階梯型螺旋相位板多階梯型螺旋相位板多孔型螺旋相位板成本低、轉換效率高、系統(tǒng)復雜度較低;但是僅能在單點頻率上實現(xiàn)單模態(tài)轉換,并且器件轉換過程較復雜。可用于實現(xiàn)高容量、高頻譜效率的毫米波和太赫茲通信。
    透射反射面波束入射到非平面螺旋結構的不同區(qū)域,導致波束相鄰部分存在相對延遲。階梯型反射面
    螺旋拋物面天線
    成本低、系統(tǒng)復雜度較低、轉換效率和轉換速度正常;但是僅能在單點頻率上生成單模態(tài)和非純模態(tài),并且實現(xiàn)過程較復雜。通過OAM編碼技術實現(xiàn)同頻寬帶干擾和地面反射干擾的魯棒性傳輸。
    天線陣列為各陣列單元饋送相同信號,通過改變陣元間饋電相位差產(chǎn)生不同的模態(tài)。圓形相控陣列時間開關陣列巴特勒矩陣饋電陣列光實時延時天線陣列可在所有頻率范圍內(nèi)生成多個模態(tài)和相反模態(tài),器件制作較容易,轉換速度和效率一般;但是成本高、系統(tǒng)復雜度較高。可對攜帶OAM的射頻信號進行多路復用和解復用,增加系統(tǒng)容量和效率。
    q-板在普通介質(zhì)材料上加工特定幾何形狀的凹槽形成一種非均勻雙折射結構。成本低、系統(tǒng)復雜度較低、轉換速度一般;但是僅能在單點頻率處生成單模態(tài),實現(xiàn)過程也較復雜。可用于100 GHz毫米波OAM波束的產(chǎn)生和檢測[30]
    下載: 導出CSV

    表  3  基于超表面的電磁渦旋產(chǎn)生方法比較

    研究團隊單元結構產(chǎn)生方法/原理實驗頻率模態(tài)l存在問題
    香港大學和浙江研究團隊3維光子晶體點缺陷[37]8.8 GHz±2
    9.7 GHz±1
    偶極子通過調(diào)整散射體的幾何形狀改變其諧振頻率,使得相移在設計頻率處發(fā)生變化[32]6.2 GHz±2超表面散射體之間通常存在不可避免相互耦合現(xiàn)象
    上海同濟大學金屬貼片
    層金屬接地層
    介電間隔層
    梯度相位反射超表面[38]10 GHz1不連續(xù)相位剖面會引入相位噪聲
    西安交通大學金屬片和襯底由變?nèi)荻O管加載可調(diào)諧散射體超表面[39]5.35 GHz±1, ±2元件數(shù)量受限,難以生成高模態(tài)
    下載: 導出CSV

    表  4  典型的OAM檢測方法

    檢測方法結構基本原理優(yōu)缺點結果
    單點法利用OAM遠場近似,對檢測點上電場和磁場的
    所有3個分量進行模式分析,計算得出
    在空間特定點上的拓撲電荷值。
    成本低、系統(tǒng)復雜度較低;需對整個波前進行采樣;適用于單模態(tài)和較低模態(tài)的檢測。
    相位梯度法檢測兩點間相位梯度,通過螺旋相位結構判定OAM模態(tài)。成本低、系統(tǒng)復雜度較低;僅需分析波前上的兩個采樣點,適用于單模態(tài)檢測。
    多環(huán)諧振器OAM
    天線
    經(jīng)驗模式分解電磁波的基礎可以由經(jīng)驗模式分解中的固有模式函數(shù)構成,由此定義每個局部拓撲電荷。能夠檢測疊加態(tài)。檢測了-2和3的疊加態(tài)
    數(shù)字虛擬旋轉
    天線
    接收天線高速采樣示波器頻譜分析儀根據(jù)旋轉多普勒頻移和OAM模態(tài)之間的關系確定OAM模態(tài)。系統(tǒng)較復雜;適用于檢測單個模態(tài)。檢測了1, 2, 4共3個單模態(tài)
    衍射模式轉換器OAM模式轉換器,接收天線SPP板產(chǎn)生不同模態(tài)渦旋波束;模式轉換器將渦旋波束映射為平面波,通過透鏡聚焦產(chǎn)生橫向光斑,最后接收。成本較低;需檢測整個波前,但是適用于單模態(tài)和疊加態(tài)的檢測。檢測了–3到3共7個單模態(tài)和兩個疊加態(tài)
    全息超表面全息超表面超表面將OAM波束轉換為高斯波束,通過定位高斯波束在設定位置處的場強確定入射OAM模態(tài)。系統(tǒng)復雜度較低;成本高、器件實現(xiàn)較復雜;適用于多個單模態(tài)的檢測。檢測了–2到2共5個單模態(tài)
    部分孔徑取樣接收法將光學中用于OAM解復用的偏角接收孔徑法和采樣接收法結合。僅需對部分波前進行采樣,以檢測多個模態(tài);成本高;
    均勻圓形天線
    陣列
    對接收到的電磁渦旋進行頻譜分析。可檢測相反模態(tài)和但,模態(tài);成本高,需對整個波前采樣,系統(tǒng)復雜度高。
    下載: 導出CSV

    表  5  OAM與LTE傳輸速率和頻譜利用率比較

    通信類型頻譜利用率(bps/Hz)傳輸速率(Mbps)調(diào)制方式
    OAM95.5256016-QAM[16]
    LTE16.32326.464-QAM
    下載: 導出CSV

    表  6  不同傳輸實驗比較

    文獻方法模態(tài)l傳輸距離傳輸速率頻率頻譜效率誤碼率
    文獻[17]螺旋拋物面天線0, –1442 m2.4 GHz
    文獻[64]貼片陣列天線±1, ±32.5 m32 Gbps毫米波16 Gbps/Hz3.8×10–3
    文獻[65]部分波陣面接收27.5 km10 GHz
    下載: 導出CSV
  • POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 82(557): 560–567.
    DARWIN C G. Notes on the theory of radiation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1932, 136(829): 36–52.
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    TAO S H, YUAN X C, LIN J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726–7731. doi: 10.1364/OPEX.13.007726
    SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner[J]. Optics Letters, 1997, 22(1): 52–54. doi: 10.1364/OL.22.000052
    DI TRAPANI P, CHINAGLIA W, MINARDI S, et al. Observation of quadratic optical vortex solitons[J]. Physical Review Letters, 2000, 84(17): 3843–3846. doi: 10.1103/PhysRevLett.84.3843
    POPESCU G and DOGARIU A. Spectral anomalies at wave-front dislocations[J]. Physical Review Letters, 2002, 88(18): 183902. doi: 10.1103/PhysRevLett.88.183902
    BER?ANSKIS A, MATIJO?LUS A, PISKARSKAS A, et al. Conversion of topological charge of optical vortices in a parametric frequency converter[J]. Optics Communications, 1997, 140(4/6): 273–276.
    GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448
    XIE Guodong, REN Yongxiong, YAN Yan, et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices[J]. Optics Letters, 2016, 41(15): 3447–3450. doi: 10.1364/OL.41.003447
    NDAGANO B, NAPE I, COX M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 2018, 36(2): 292–301. doi: 10.1109/JLT.2017.2766760
    YUAN Tiezhu, WANG Hongqiang, CHENG Yongqiang, et al. Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results[J]. Sensors, 2017, 17(3): 630. doi: 10.3390/s17030630
    LIN Mingtuan, LIU Peiguo, GAO Yue, et al. Super-resolution orbital angular momentum based radar targets detection[J]. Electronics Letters, 2016, 52(13): 1168–1170. doi: 10.1049/el.2016.0237
    SHI Chengzhi, DUBOIS M, WANG Yuan, et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7250–7253. doi: 10.1073/pnas.1704450114
    THIDé B, THEN H, SJ?HOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
    WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138
    TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001
    PADGETT M J. Orbital angular momentum 25 years on [Invited][J]. Optics Express, 2017, 25(10): 11265–11274. doi: 10.1364/OE.25.011265
    劉康, 黎湘, 王宏強, 等. 渦旋電磁波及其在雷達中應用研究進展[J]. 電子學報, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034

    LIU Kang, LI Xiang, WANG Hongqiang, et al. The advances of vortex electromagnetic wave in radar applications[J]. Acta Electronica Sinica, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034
    CHENG Wenchi, ZHANG Wei, JING Haiyue, et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 2019, 26(1): 100–107. doi: 10.1109/MWC.2017.1700370
    JING Haiyue, CHENG Wenchi, LI Zan, et al. Concentric UCAs based low-order OAM for high capacity in radio vortex wireless communications[J]. Journal of Communications and Information Networks, 2018, 3(4): 85–100. doi: 10.1007/s41650-018-0036-z
    CHENG Wenchi, ZHANG Hailin, LIANG Liping, et al. Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmwave communications[J]. IEEE Access, 2018, 6: 2732–2745. doi: 10.1109/ACCESS.2017.2785125
    LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Mode hopping for anti-jamming in radio vortex wireless communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7018–7032. doi: 10.1109/TVT.2018.2825539
    孫學宏, 李強, 龐丹旭, 等. 軌道角動量在無線通信中的研究新進展綜述[J]. 電子學報, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025

    SUN Xuehong, LI Qiang, PANG Danxu, et al. New research progress of the orbital angular momentum technology in wireless communication: A survey[J]. Acta Electronica Sinica, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025
    MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—a system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    TAMBURINI F, THIDé B, MARI E, et al. Reply to comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118002. doi: 10.1088/1367-2630/14/11/118002
    BOUCHAL Z and CELECHOVSKY R. Mixed vortex states of light as information carriers[J]. New Journal of Physics, 2004, 6(1): 131.
    MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529
    CHEN Menglin, JIANG Lijun, and SHA Wei. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362. doi: 10.3390/app8030362
    MACCALLI S, PISANO G, COLAFRANCESCO S, et al. Q-plate for millimeter-wave orbital angular momentum manipulation[J]. Applied Optics, 2013, 52(4): 635–639. doi: 10.1364/AO.52.000635
    KOU Na, YU Shixing, and LI Long. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain[J]. Applied Physics Express, 2017, 10(1): 016701. doi: 10.7567/APEX.10.016701
    CHEN Menglin, JIANG Lijun, and SHA Wei. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency[J]. Journal of Applied Physics, 2016, 119(6): 064506. doi: 10.1063/1.4941696
    GUO Yinghui, PU Mingbo, ZHAO Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary Orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029. doi: 10.1021/acsphotonics.6b00564
    KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.
    MA Xiaoliang, PU Mingbo, LI Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365
    CHEN Menglin, JIANG Lijun, and SHA Wei. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722
    CHEN Menglin, JIANG Lijun, and SHA Wei. Generation of orbital angular momentum by a point defect in photonic crystals[J]. Physical Review Applied, 2018, 10(1): 014034. doi: 10.1103/PhysRevApplied.10.014034
    XU Bijun, WU Chao, WEI Zeyong, et al. Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase[J]. Optical Materials Express, 2016, 6(12): 3940–3945. doi: 10.1364/OME.6.003940
    SHI Hongyu, WANG Luyi, PENG Gantao, et al. Generation of multiple modes microwave vortex beams using active metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 59–63. doi: 10.1109/LAWP.2018.2880732
    CHEN Menglin, JIANG Lijun, and SHA Wei. Quasi-continuous metasurfaces for orbital angular momentum generation[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 477–481. doi: 10.1109/LAWP.2019.2894772
    ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi: 10.1109/ACCESS.2017.2766078
    YAN Yan, LI Long, XIE Guodong, et al. Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 1370–1375.
    YAO Yu, LIANG Xianlin, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760
    ZHANG Runzhou, LI Long, ZHAO Zhe, et al. Coherent optical wireless communication link employing orbital angular momentum multiplexing in a ballistic and diffusive scattering medium[J]. Optics Letters, 2019, 44(3): 691–694. doi: 10.1364/OL.44.000691
    NIEMIEC R, BROUSSEAU C, EMILE O, et al. Study of OAM waves reflection on different types of surfaces or objects at 2.45 GHz[C]. The 1st URSI Atlantic Radio Science Conference, Las Palmas, Spain, 2015: 1–2.
    CHEN Menglin, JIANG Lijun, and SHA Wei. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 110–113. doi: 10.1109/LAWP.2017.2777439
    MOHAMMADI S M, DALDORFF L K S, FOROZESH K, et al. Orbital angular momentum in radio: Measurement methods[J]. Radio Science, 2010, 45(4): RS4007.
    HUI Xiaonan, ZHENG Shilie, ZHANG Weite, et al. Local topological charge analysis of electromagnetic vortex beam based on empirical mode decomposition[J]. Optics Express, 2016, 24(5): 5423–5430. doi: 10.1364/OE.24.005423
    ZHANG Chao and MA Lu. Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna[J]. Scientific Reports, 2017, 7(1): 4585. doi: 10.1038/s41598-017-04313-4
    LIU Changming, WEI Xuli, NIU Liting, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer[J]. Optics Express, 2016, 24(12): 12534–12541. doi: 10.1364/OE.24.012534
    ZHENG Shilie, JIN Xiaofeng, ZHANG Xianmin, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047.
    武華陽. 無線軌道角動量通信與雷達目標成像技術研究[D]. [碩士論文], 浙江大學, 2017.

    WU Huayang. Research on wireless communication and radar target imaging technique based on OAM[D]. [Master dissertation], Zhejiang University, 2017.
    LEE D, SASAKI H, FUKUMOTO H, et al. Orbital angular momentum (OAM) multiplexing: An enabler of a new era of wireless communications[J]. IEICE Transactions on Communications, 2017, 100(7): 1044–1063.
    黃銘, 毛福春, 曾佳, 等. 軌道角動量復用技術[J]. 中國無線電, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018

    HUANG Ming, MAO Fuchun, ZENG Jia, et al. Orbital angular momentum multiplexing technology[J]. China Radio, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018
    ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Mode division multiplexing communication using microwave orbital angular momentum: An experimental study[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1308–1318. doi: 10.1109/TWC.2016.2645199
    LI Yang, LI Xiong, CHEN Lianwei, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502
    ZHANG Di, CAO Xiangyu, GAO Jun, et al. A shared aperture 1 bit metasurface for orbital angular momentum multiplexing[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 566–570. doi: 10.1109/LAWP.2019.2893492
    OPARE K A, KUANG Yujun, and KPONYO J J. Mode combination in an ideal wireless OAM-MIMO multiplexing system[J]. IEEE Wireless Communications Letters, 2015, 4(4): 449–452. doi: 10.1109/LWC.2015.2434375
    LEE D, SASAKI H, FUKUMOTO H, et al. An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing[C]. The 87th IEEE Vehicular Technology Conference, Porto, Portugal, 2018: 1–5.
    YAN Yan, LI Long, XIE Guodong, et al. OFDM over mm-wave OAM channels in a multipath environment with intersymbol interference[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6.
    CHEN Rui, YANG Wenhai, XU Hui, et al. A 2-D FFT-based transceiver architecture for OAM-OFDM systems with UCA antennas[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5481–5485. doi: 10.1109/TVT.2018.2817230
    HU Tao, WANG Yang, LIAO Xi, et al. OFDM-OAM modulation for future wireless communications[J]. IEEE Access, 2019, 7: 59114–59125. doi: 10.1109/ACCESS.2019.2915035
    GOU Pengqi, KONG Miao, YANG Guomin, et al. Integration of OAM and WDM in optical wireless system by radial uniform circular array[J]. Optics Communications, 2018, 424: 159–162. doi: 10.1016/j.optcom.2018.04.059
    YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    觀察者. 中國完成世界首次微波頻段軌道角動量電磁波27.5公里長距離傳輸實驗[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017.

    Guancha Syndicate. China has completed the world's first long-distance transmission experiment of 27.5 km of microwave frequency orbital angular momentum electromagnetic wave[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017.
    TAMAGNONE M, CRAEYE C, and PERRUISSEAU-CARRIER J. Comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118001. doi: 10.1088/1367-2630/14/11/118001
  • 加載中
圖(9) / 表(6)
計量
  • 文章訪問數(shù):  5228
  • HTML全文瀏覽量:  2522
  • PDF下載量:  324
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-05-20
  • 修回日期:  2019-09-18
  • 網(wǎng)絡出版日期:  2020-03-02
  • 刊出日期:  2020-07-23

目錄

    /

    返回文章
    返回