面向無線通信的軌道角動量關鍵技術研究進展
doi: 10.11999/JEIT190372 cstr: 32379.14.JEIT190372
-
1.
重慶郵電大學通信與信息工程學院 重慶 400065
-
2.
重慶金美通信有限責任公司 重慶 400030
A Survey of Orbital Angular Momentum in Wireless Communication
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Chongqing Jinmei Communications Co. LTD, Chongqing 400030, China
-
摘要:
電磁渦旋因攜帶軌道角動量而具有高維可調(diào)制自由度,被引入無線通信中以提升頻譜效率和抗干擾能力。該文首先介紹了軌道角動量和電磁渦旋的基本原理與特性;然后比較了電磁渦旋的產(chǎn)生方法,給出了超表面產(chǎn)生軌道角動量的工作原理,綜述了基于超表面的軌道角動量產(chǎn)生方法和研究現(xiàn)狀;總結了軌道角動量的傳輸性能、接收與檢測方法、復用與解復用性能;最后討論了未來在應用無線通信軌道角動量時需要解決的關鍵問題。
Abstract:Electromagnetic vortices are introduced into wireless communication to improve spectral efficiency and anti-interference capability. In this paper, the basic principle and characteristics of Orbital Angular Momentum (OAM) and electromagnetic eddy are introduced firstly. The principle of generating Orbital Angular Momentum from supersurface is given, and the methods and research status of generating orbital angular momentum based on supersurface are summarized. The transmission performance, receiving and detecting method, multiplexing and demultiplexing performance of orbital angular momentum are summarized. Finally, the key problems to be solved in the future application of wireless communication orbital angular momentum are discussed.
-
表 1 電磁渦旋特性
特性 基本原理 潛在應用 正交性 任意兩個整數(shù)階模態(tài)的OAM波束互相正交,構成無窮維希爾伯特空間 提升系統(tǒng)頻譜效率 發(fā)散性 隨著距離和OAM階數(shù)的增加,OAM波束發(fā)散程度加劇 – 穩(wěn)定性 OAM的相位結構與傳輸距離無關[26];當拓撲電荷為整數(shù)時相位奇點處場強為零,并且隨著傳播距離增加,中心對稱的場強分布保持穩(wěn)定。 實現(xiàn)長距離傳輸 反射性 OAM渦旋波束經(jīng)過鏡面反射只改變旋轉方向不影響波前相位結構 有利于分析多徑效應
對傳輸系統(tǒng)的影響安全性 受到角度限制和橫向偏移的影響,在傳輸過程中對信號的抽樣檢測存在不確定性[9],可有效防止信息被竊取。 更高編碼強度,實現(xiàn)高容量高保密性通信[27] 多維量子糾纏 單光子或糾纏光子可用于量子信息處理,非整數(shù)模態(tài)OAM模態(tài)可以分解為整數(shù)OAM模態(tài)的線性疊加;糾纏的量子態(tài)不可分離[28]。 下載: 導出CSV
表 2 典型OAM產(chǎn)生方法與分類
產(chǎn)生方式 生成原理 典型代表 優(yōu)缺點 應用 透射光柵結構 利用干涉條紋產(chǎn)生的交叉錯位結果得到的叉形光柵生成相位全息圖,結合計算機仿真數(shù)據(jù)制作相位全息面。 空間光調(diào)制器 成本低、轉換速度快、可工作在任意頻率、系統(tǒng)復雜度較低;但是僅能實現(xiàn)單模態(tài)和非純模態(tài)的生成、器件實現(xiàn)較復雜。 可用于毫米波頻段產(chǎn)生OAM波束,通過空間復用提高頻譜效率。 透射螺旋結構 波束透過厚度$h$隨中心旋轉方位角$\phi $比例變化的相位板,產(chǎn)生相位差隨厚度變化的透射電磁波。 單階梯型螺旋相位板多階梯型螺旋相位板多孔型螺旋相位板 成本低、轉換效率高、系統(tǒng)復雜度較低;但是僅能在單點頻率上實現(xiàn)單模態(tài)轉換,并且器件轉換過程較復雜。 可用于實現(xiàn)高容量、高頻譜效率的毫米波和太赫茲通信。 透射反射面 波束入射到非平面螺旋結構的不同區(qū)域,導致波束相鄰部分存在相對延遲。 階梯型反射面
螺旋拋物面天線成本低、系統(tǒng)復雜度較低、轉換效率和轉換速度正常;但是僅能在單點頻率上生成單模態(tài)和非純模態(tài),并且實現(xiàn)過程較復雜。 通過OAM編碼技術實現(xiàn)同頻寬帶干擾和地面反射干擾的魯棒性傳輸。 天線陣列 為各陣列單元饋送相同信號,通過改變陣元間饋電相位差產(chǎn)生不同的模態(tài)。 圓形相控陣列時間開關陣列巴特勒矩陣饋電陣列光實時延時天線陣列 可在所有頻率范圍內(nèi)生成多個模態(tài)和相反模態(tài),器件制作較容易,轉換速度和效率一般;但是成本高、系統(tǒng)復雜度較高。 可對攜帶OAM的射頻信號進行多路復用和解復用,增加系統(tǒng)容量和效率。 q-板 在普通介質(zhì)材料上加工特定幾何形狀的凹槽形成一種非均勻雙折射結構。 – 成本低、系統(tǒng)復雜度較低、轉換速度一般;但是僅能在單點頻率處生成單模態(tài),實現(xiàn)過程也較復雜。 可用于100 GHz毫米波OAM波束的產(chǎn)生和檢測[30]。 下載: 導出CSV
表 3 基于超表面的電磁渦旋產(chǎn)生方法比較
研究團隊 單元結構 產(chǎn)生方法/原理 實驗頻率 模態(tài)l 存在問題 香港大學和浙江研究團隊 – 3維光子晶體點缺陷[37] 8.8 GHz ±2 – 9.7 GHz ±1 偶極子 通過調(diào)整散射體的幾何形狀改變其諧振頻率,使得相移在設計頻率處發(fā)生變化[32] 6.2 GHz ±2 超表面散射體之間通常存在不可避免相互耦合現(xiàn)象 上海同濟大學 金屬貼片
層金屬接地層
介電間隔層梯度相位反射超表面[38] 10 GHz 1 不連續(xù)相位剖面會引入相位噪聲 西安交通大學 金屬片和襯底 由變?nèi)荻O管加載可調(diào)諧散射體超表面[39] 5.35 GHz ±1, ±2 元件數(shù)量受限,難以生成高模態(tài) 下載: 導出CSV
表 4 典型的OAM檢測方法
檢測方法 結構 基本原理 優(yōu)缺點 結果 單點法 – 利用OAM遠場近似,對檢測點上電場和磁場的
所有3個分量進行模式分析,計算得出
在空間特定點上的拓撲電荷值。成本低、系統(tǒng)復雜度較低;需對整個波前進行采樣;適用于單模態(tài)和較低模態(tài)的檢測。 – 相位梯度法 – 檢測兩點間相位梯度,通過螺旋相位結構判定OAM模態(tài)。 成本低、系統(tǒng)復雜度較低;僅需分析波前上的兩個采樣點,適用于單模態(tài)檢測。 – 多環(huán)諧振器OAM
天線經(jīng)驗模式分解 電磁波的基礎可以由經(jīng)驗模式分解中的固有模式函數(shù)構成,由此定義每個局部拓撲電荷。 能夠檢測疊加態(tài)。 檢測了-2和3的疊加態(tài) 數(shù)字虛擬旋轉
天線接收天線高速采樣示波器頻譜分析儀 根據(jù)旋轉多普勒頻移和OAM模態(tài)之間的關系確定OAM模態(tài)。 系統(tǒng)較復雜;適用于檢測單個模態(tài)。 檢測了1, 2, 4共3個單模態(tài) 衍射模式轉換器 OAM模式轉換器,接收天線 SPP板產(chǎn)生不同模態(tài)渦旋波束;模式轉換器將渦旋波束映射為平面波,通過透鏡聚焦產(chǎn)生橫向光斑,最后接收。 成本較低;需檢測整個波前,但是適用于單模態(tài)和疊加態(tài)的檢測。 檢測了–3到3共7個單模態(tài)和兩個疊加態(tài) 全息超表面 全息超表面 超表面將OAM波束轉換為高斯波束,通過定位高斯波束在設定位置處的場強確定入射OAM模態(tài)。 系統(tǒng)復雜度較低;成本高、器件實現(xiàn)較復雜;適用于多個單模態(tài)的檢測。 檢測了–2到2共5個單模態(tài) 部分孔徑取樣接收法 – 將光學中用于OAM解復用的偏角接收孔徑法和采樣接收法結合。 僅需對部分波前進行采樣,以檢測多個模態(tài);成本高; – 均勻圓形天線
陣列對接收到的電磁渦旋進行頻譜分析。 可檢測相反模態(tài)和但,模態(tài);成本高,需對整個波前采樣,系統(tǒng)復雜度高。 下載: 導出CSV
-
POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1909, 82(557): 560–567. DARWIN C G. Notes on the theory of radiation[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1932, 136(829): 36–52. ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185 TAO S H, YUAN X C, LIN J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726–7731. doi: 10.1364/OPEX.13.007726 SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner[J]. Optics Letters, 1997, 22(1): 52–54. doi: 10.1364/OL.22.000052 DI TRAPANI P, CHINAGLIA W, MINARDI S, et al. Observation of quadratic optical vortex solitons[J]. Physical Review Letters, 2000, 84(17): 3843–3846. doi: 10.1103/PhysRevLett.84.3843 POPESCU G and DOGARIU A. Spectral anomalies at wave-front dislocations[J]. Physical Review Letters, 2002, 88(18): 183902. doi: 10.1103/PhysRevLett.88.183902 BER?ANSKIS A, MATIJO?LUS A, PISKARSKAS A, et al. Conversion of topological charge of optical vortices in a parametric frequency converter[J]. Optics Communications, 1997, 140(4/6): 273–276. GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448 XIE Guodong, REN Yongxiong, YAN Yan, et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices[J]. Optics Letters, 2016, 41(15): 3447–3450. doi: 10.1364/OL.41.003447 NDAGANO B, NAPE I, COX M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 2018, 36(2): 292–301. doi: 10.1109/JLT.2017.2766760 YUAN Tiezhu, WANG Hongqiang, CHENG Yongqiang, et al. Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results[J]. Sensors, 2017, 17(3): 630. doi: 10.3390/s17030630 LIN Mingtuan, LIU Peiguo, GAO Yue, et al. Super-resolution orbital angular momentum based radar targets detection[J]. Electronics Letters, 2016, 52(13): 1168–1170. doi: 10.1049/el.2016.0237 SHI Chengzhi, DUBOIS M, WANG Yuan, et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7250–7253. doi: 10.1073/pnas.1704450114 THIDé B, THEN H, SJ?HOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701 WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138 TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001 PADGETT M J. Orbital angular momentum 25 years on [Invited][J]. Optics Express, 2017, 25(10): 11265–11274. doi: 10.1364/OE.25.011265 劉康, 黎湘, 王宏強, 等. 渦旋電磁波及其在雷達中應用研究進展[J]. 電子學報, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034LIU Kang, LI Xiang, WANG Hongqiang, et al. The advances of vortex electromagnetic wave in radar applications[J]. Acta Electronica Sinica, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034 CHENG Wenchi, ZHANG Wei, JING Haiyue, et al. Orbital angular momentum for wireless communications[J]. IEEE Wireless Communications, 2019, 26(1): 100–107. doi: 10.1109/MWC.2017.1700370 JING Haiyue, CHENG Wenchi, LI Zan, et al. Concentric UCAs based low-order OAM for high capacity in radio vortex wireless communications[J]. Journal of Communications and Information Networks, 2018, 3(4): 85–100. doi: 10.1007/s41650-018-0036-z CHENG Wenchi, ZHANG Hailin, LIANG Liping, et al. Orbital-angular-momentum embedded massive MIMO: Achieving multiplicative spectrum-efficiency for mmwave communications[J]. IEEE Access, 2018, 6: 2732–2745. doi: 10.1109/ACCESS.2017.2785125 LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Mode hopping for anti-jamming in radio vortex wireless communications[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 7018–7032. doi: 10.1109/TVT.2018.2825539 孫學宏, 李強, 龐丹旭, 等. 軌道角動量在無線通信中的研究新進展綜述[J]. 電子學報, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025SUN Xuehong, LI Qiang, PANG Danxu, et al. New research progress of the orbital angular momentum technology in wireless communication: A survey[J]. Acta Electronica Sinica, 2015, 43(11): 2305–2314. doi: 10.3969/j.issn.0372-2112.2015.11.025 MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—a system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701 TAMBURINI F, THIDé B, MARI E, et al. Reply to comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118002. doi: 10.1088/1367-2630/14/11/118002 BOUCHAL Z and CELECHOVSKY R. Mixed vortex states of light as information carriers[J]. New Journal of Physics, 2004, 6(1): 131. MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316. doi: 10.1038/35085529 CHEN Menglin, JIANG Lijun, and SHA Wei. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362. doi: 10.3390/app8030362 MACCALLI S, PISANO G, COLAFRANCESCO S, et al. Q-plate for millimeter-wave orbital angular momentum manipulation[J]. Applied Optics, 2013, 52(4): 635–639. doi: 10.1364/AO.52.000635 KOU Na, YU Shixing, and LI Long. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain[J]. Applied Physics Express, 2017, 10(1): 016701. doi: 10.7567/APEX.10.016701 CHEN Menglin, JIANG Lijun, and SHA Wei. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency[J]. Journal of Applied Physics, 2016, 119(6): 064506. doi: 10.1063/1.4941696 GUO Yinghui, PU Mingbo, ZHAO Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary Orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029. doi: 10.1021/acsphotonics.6b00564 KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167. MA Xiaoliang, PU Mingbo, LI Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365 CHEN Menglin, JIANG Lijun, and SHA Wei. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722 CHEN Menglin, JIANG Lijun, and SHA Wei. Generation of orbital angular momentum by a point defect in photonic crystals[J]. Physical Review Applied, 2018, 10(1): 014034. doi: 10.1103/PhysRevApplied.10.014034 XU Bijun, WU Chao, WEI Zeyong, et al. Generating an orbital-angular-momentum beam with a metasurface of gradient reflective phase[J]. Optical Materials Express, 2016, 6(12): 3940–3945. doi: 10.1364/OME.6.003940 SHI Hongyu, WANG Luyi, PENG Gantao, et al. Generation of multiple modes microwave vortex beams using active metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 59–63. doi: 10.1109/LAWP.2018.2880732 CHEN Menglin, JIANG Lijun, and SHA Wei. Quasi-continuous metasurfaces for orbital angular momentum generation[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 477–481. doi: 10.1109/LAWP.2019.2894772 ZHENG Shilie, DONG Ruofan, ZHANG Zhuofan, et al. Non-line-of-sight channel performance of plane spiral orbital angular momentum MIMO systems[J]. IEEE Access, 2017, 5: 25377–25384. doi: 10.1109/ACCESS.2017.2766078 YAN Yan, LI Long, XIE Guodong, et al. Experimental measurements of multipath-induced intra- and inter-channel crosstalk effects in a millimeter-wave communications link using orbital-angular-momentum multiplexing[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 1370–1375. YAO Yu, LIANG Xianlin, ZHU Maohua, et al. Analysis and experiments on reflection and refraction of orbital angular momentum waves[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(4): 2085–2094. doi: 10.1109/TAP.2019.2896760 ZHANG Runzhou, LI Long, ZHAO Zhe, et al. Coherent optical wireless communication link employing orbital angular momentum multiplexing in a ballistic and diffusive scattering medium[J]. Optics Letters, 2019, 44(3): 691–694. doi: 10.1364/OL.44.000691 NIEMIEC R, BROUSSEAU C, EMILE O, et al. Study of OAM waves reflection on different types of surfaces or objects at 2.45 GHz[C]. The 1st URSI Atlantic Radio Science Conference, Las Palmas, Spain, 2015: 1–2. CHEN Menglin, JIANG Lijun, and SHA Wei. Detection of orbital angular momentum with metasurface at microwave band[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 110–113. doi: 10.1109/LAWP.2017.2777439 MOHAMMADI S M, DALDORFF L K S, FOROZESH K, et al. Orbital angular momentum in radio: Measurement methods[J]. Radio Science, 2010, 45(4): RS4007. HUI Xiaonan, ZHENG Shilie, ZHANG Weite, et al. Local topological charge analysis of electromagnetic vortex beam based on empirical mode decomposition[J]. Optics Express, 2016, 24(5): 5423–5430. doi: 10.1364/OE.24.005423 ZHANG Chao and MA Lu. Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna[J]. Scientific Reports, 2017, 7(1): 4585. doi: 10.1038/s41598-017-04313-4 LIU Changming, WEI Xuli, NIU Liting, et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer[J]. Optics Express, 2016, 24(12): 12534–12541. doi: 10.1364/OE.24.012534 ZHENG Shilie, JIN Xiaofeng, ZHANG Xianmin, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047. 武華陽. 無線軌道角動量通信與雷達目標成像技術研究[D]. [碩士論文], 浙江大學, 2017.WU Huayang. Research on wireless communication and radar target imaging technique based on OAM[D]. [Master dissertation], Zhejiang University, 2017. LEE D, SASAKI H, FUKUMOTO H, et al. Orbital angular momentum (OAM) multiplexing: An enabler of a new era of wireless communications[J]. IEICE Transactions on Communications, 2017, 100(7): 1044–1063. 黃銘, 毛福春, 曾佳, 等. 軌道角動量復用技術[J]. 中國無線電, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018HUANG Ming, MAO Fuchun, ZENG Jia, et al. Orbital angular momentum multiplexing technology[J]. China Radio, 2013(5): 34–36. doi: 10.3969/j.issn.1672-7797.2013.05.018 ZHANG Weite, ZHENG Shilie, HUI Xiaonan, et al. Mode division multiplexing communication using microwave orbital angular momentum: An experimental study[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 1308–1318. doi: 10.1109/TWC.2016.2645199 LI Yang, LI Xiong, CHEN Lianwei, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502 ZHANG Di, CAO Xiangyu, GAO Jun, et al. A shared aperture 1 bit metasurface for orbital angular momentum multiplexing[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(4): 566–570. doi: 10.1109/LAWP.2019.2893492 OPARE K A, KUANG Yujun, and KPONYO J J. Mode combination in an ideal wireless OAM-MIMO multiplexing system[J]. IEEE Wireless Communications Letters, 2015, 4(4): 449–452. doi: 10.1109/LWC.2015.2434375 LEE D, SASAKI H, FUKUMOTO H, et al. An experimental demonstration of 28 GHz band wireless OAM-MIMO (orbital angular momentum multi-input and multi-output) multiplexing[C]. The 87th IEEE Vehicular Technology Conference, Porto, Portugal, 2018: 1–5. YAN Yan, LI Long, XIE Guodong, et al. OFDM over mm-wave OAM channels in a multipath environment with intersymbol interference[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. CHEN Rui, YANG Wenhai, XU Hui, et al. A 2-D FFT-based transceiver architecture for OAM-OFDM systems with UCA antennas[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5481–5485. doi: 10.1109/TVT.2018.2817230 HU Tao, WANG Yang, LIAO Xi, et al. OFDM-OAM modulation for future wireless communications[J]. IEEE Access, 2019, 7: 59114–59125. doi: 10.1109/ACCESS.2019.2915035 GOU Pengqi, KONG Miao, YANG Guomin, et al. Integration of OAM and WDM in optical wireless system by radial uniform circular array[J]. Optics Communications, 2018, 424: 159–162. doi: 10.1016/j.optcom.2018.04.059 YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876 觀察者. 中國完成世界首次微波頻段軌道角動量電磁波27.5公里長距離傳輸實驗[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017.Guancha Syndicate. China has completed the world's first long-distance transmission experiment of 27.5 km of microwave frequency orbital angular momentum electromagnetic wave[EB/OL]. https://www.guancha.cn/Science/2017_02_22_395395.shtml, 2017. TAMAGNONE M, CRAEYE C, and PERRUISSEAU-CARRIER J. Comment on ‘encoding many channels on the same frequency through radio vorticity: First experimental test’[J]. New Journal of Physics, 2012, 14(11): 118001. doi: 10.1088/1367-2630/14/11/118001 -