一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

基于均值不等關(guān)系優(yōu)化的自適應圖像去霧算法

楊燕 王志偉

楊燕, 王志偉. 基于均值不等關(guān)系優(yōu)化的自適應圖像去霧算法[J]. 電子與信息學報, 2020, 42(3): 755-763. doi: 10.11999/JEIT190368
引用本文: 楊燕, 王志偉. 基于均值不等關(guān)系優(yōu)化的自適應圖像去霧算法[J]. 電子與信息學報, 2020, 42(3): 755-763. doi: 10.11999/JEIT190368
Yan YANG, Zhiwei WANG. Adaptive Image Dehazing Algorithm Based on Mean Unequal Relation Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(3): 755-763. doi: 10.11999/JEIT190368
Citation: Yan YANG, Zhiwei WANG. Adaptive Image Dehazing Algorithm Based on Mean Unequal Relation Optimization[J]. Journal of Electronics & Information Technology, 2020, 42(3): 755-763. doi: 10.11999/JEIT190368

基于均值不等關(guān)系優(yōu)化的自適應圖像去霧算法

doi: 10.11999/JEIT190368 cstr: 32379.14.JEIT190368
基金項目: 國家自然科學基金(61561030),甘肅省財政廳基本科研業(yè)務費基金(214138),蘭州交通大學教改基金(160012)
詳細信息
    作者簡介:

    楊燕:女,1972年生,博士,教授、碩士生導師,主要研究方向為數(shù)字圖像處理、智能信息處理、語音信號處理

    王志偉:男,1996年生,碩士生,主要研究方向為數(shù)字圖像處理、計算機視覺

    通訊作者:

    楊燕 yangyantd@mail.lzjtu.cn

  • 中圖分類號: TN911.73; TP391.41

Adaptive Image Dehazing Algorithm Based on Mean Unequal Relation Optimization

Funds: The National Natural Science Foundation of China (61561030), The Fundamental Research Funds for the Gansu Provincial Finance Department (214138), The Research Fund of Teaching Reform Project of Lanzhou Jiao Tong University (160012)
  • 摘要:

    針對暗通道先驗去霧算法的不足,如天空區(qū)域透射率估計過小和在景深突變處易發(fā)生光暈效應,該文提出一種新穎且高效的去霧算法。首先通過幾何分析建立霧圖對應無霧圖像暗通道圖的平面扇形模型,然后設定一種新型的高斯均值函數(shù),對其標準差進行自適應處理,用以估計扇形模型的上下邊界值,通過引入均值不等關(guān)系對兩側(cè)邊界進行逼近,擬合出最優(yōu)無霧圖像暗通道圖,進一步求得最佳透射率,同時也改進局部大氣光的探索方法并復原出最終結(jié)果。實驗表明,與其它一些經(jīng)典算法相比較,所提算法能廣泛適用于各類圖像,去霧程度徹底且效果清晰自然,具有較低的時間復雜度,有利于實時處理。

  • 圖  1  3個向量的幾何表示

    圖  2  各個向量間的匹配關(guān)系

    圖  3  高斯均值函數(shù)

    圖  4  透射率及效果對比圖

    圖  5  大氣光值及效果對比圖

    圖  6  去霧示意圖

    圖  7  本文算法原理框圖

    圖  8  近景組圖像(圖像1-圖像3)

    圖  9  遠近景交替組圖像(圖像4-圖像6)

    圖  10  遠景組圖像(圖像7-圖像8)

    表  1  改進的大氣光探索方法

     輸入:有霧圖像${{I}^c}(x)$;
     步驟 1 找出有霧圖像的3顏色通道的最大值${A}_{\max }^c(x) = \mathop {\max }\limits_{c \in \{\rm r,g,b\} } {{I}^c}(x)$
     步驟 2 進行形態(tài)學閉操作,濾波核尺寸分別為${r_1} = \min [w,h]/5$, ${r_2} = \min [w,h]/20$,得到兩次閉操作結(jié)果${s_1}$和${s_2}$;
     步驟 3 求取兩次閉操作的平均值,$s = ({s_1} + {s_2})/2$ ;
     步驟 4 進行交叉濾波平滑處理,得到最后的結(jié)果${{A}^c}$。
    下載: 導出CSV

    表  2  各個算法的$e$$r$指標對比

    圖像He[9]算法Meng[11]算法Ren[13]算法Cai[12]算法Sun[16]算法本文算法
    erererererer
    14.501.285.821.797.551.472.761.086.441.229.011.41
    28.441.695.362.4820.711.5217.871.5615.741.4918.681.81
    313.891.7022.562.5910.821.979.111.4711.222.0121.832.01
    410.831.4824.933.7727.003.019.871.3612.741.9922.632.22
    56.871.2812.121.6915.611.7611.101.2817.252.0617.181.64
    626.231.7331.111.9031.362.6018.851.3022.751.9430.042.38
    715.511.8538.034.1220.352.5514.531.6324.742.9818.472.95
    83.691.413.121.588.941.792.491.136.331.748.561.42
    均值11.241.5517.882.4917.792.0811.821.3514.651.9318.301.98
    下載: 導出CSV

    表  3  各個算法的$\theta $$T(s)$指標對比

    圖像He[9]算法Meng[11]算法Ren[13]算法Cai[12]算法Sun[16]算法本文算法
    $\theta $T$\theta $T$\theta $T$\theta $T$\theta $T$\theta $T
    10.000182.510.006513.8004.270.009313.010.003472.470.000012.65
    20.000222.560.003553.1603.0502.870.000192.670.000012.04
    30.000312.380.000663.0803.780.001972.940.001622.0102.06
    402.610.000034.5404.600.001262.980.002762.3902.07
    50.000362.460.000043.500.000132.6704.0102.0002.07
    60.001612.8004.4003.360.001183.680.000192.1702.09
    70.000093.020.000145.1003.2203.3102.5702.43
    80.002943.940.000796.550.000183.340.001697.340.000242.770.000162.55
    均值0.000712.780.001464.270.000033.530.001923.770.001052.380.000022.25
    下載: 導出CSV
  • 周妍, 李慶武, 霍冠英. 基于非下采樣Contourlet變換系數(shù)直方圖匹配的自適應圖像增強[J]. 光學 精密工程, 2014, 22(8): 2214–2222. doi: 10.3788/OPE.20142208.2214

    ZHOU Yan, LI Qingwu, and HUO Guanying. Adaptive image enhancement based on NSCT coefficient histogram matching[J]. Optics and Precision Engineering, 2014, 22(8): 2214–2222. doi: 10.3788/OPE.20142208.2214
    CHEN Yang, LI Dan, and ZHANG Jianqiu. Complementary color wavelet: A novel tool for the color image/video analysis and processing[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(1): 12–27. doi: 10.1109/TCSVT.2017.2776239
    劉海波, 楊杰, 吳正平, 等. 基于暗通道先驗和Retinex理論的快速單幅圖像去霧方法[J]. 自動化學報, 2015, 41(7): 1264–1273. doi: 10.16383/j.aas.2015.c140748

    LIU Haibo, YANG Jie, WU Zhengping, et al. A fast single image dehazing method based on dark channel prior and Retinex theory[J]. Acta Automatica Sinica, 2015, 41(7): 1264–1273. doi: 10.16383/j.aas.2015.c140748
    SCHECHNER Y Y, NARASIMHAN S G, and NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511–525. doi: 10.1364/AO.42.000511
    NARASIMHAN S G and NAYAR S K. Interactive (de) weathering of an image using physical models[C]. 2003 IEEE Workshop on Color and Photometric Methods in Computer Vision, Nice, France, 2003: 1–8.
    TAN R T. Visibility in bad weather from a single image[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, USA, 2008: 1–8. doi: 10.1109/CVPR.2008.4587643.
    FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008, 27(3): 72. doi: 10.1145/1360612.1360671
    TAREL J P and HAUTIèRE N. Fast visibility restoration from a single color or gray level image[C]. The 12th IEEE International Conference on Computer Vision, Kyoto, Japan, 2009: 2201–2208.
    HE Kaiming, SUN Jian, and TANG Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341–2353. doi: 10.1109/TPAMI.2010.168
    ZHU Qingsong, MAI Jiaming, and SHAO Ling. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522–3533. doi: 10.1109/TIP.2015.2446191
    MENG Gaofeng, WANG Ying, DUAN Jiangyong, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 617–624.
    CAI Bolun, XU Xiangmin, JIA Kui, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187–5198. doi: 10.1109/TIP.2016.2598681
    REN Wenqi, LIU Si, ZHANG Hua, et al. Single image dehazing via multi-scale convolutional neural networks[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 154–169.
    江巨浪, 孫偉, 王振東, 等. 基于透射率權(quán)值因子的霧天圖像融合增強算法[J]. 電子與信息學報, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032

    JIANG Julang, SUN Wei, WANG Zhendong, et al. Integrated enhancement algorithm for hazy image using transmittance as weighting factor[J]. Journal of Electronics &Information Technology, 2018, 40(10): 2388–2394. doi: 10.11999/JEIT171032
    HE Kaiming, SUN Jian, and TANG Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397–1409. doi: 10.1109/TPAMI.2012.213
    SUN Wei, WANG Hao, SUN Changhao, et al. Fast single image haze removal via local atmospheric light veil estimation[J]. Computers & Electrical Engineering, 2015, 46: 371–383. doi: 10.1016/j.compeleceng.2015.02.009
    MIN Xiongkuo, ZHAI Guangtao, GU Ke, et al. Objective quality evaluation of dehazed images[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2879–2892. doi: 10.1109/TITS.2018.2868771
    楊愛萍, 王南, 龐彥偉, 等. 人工光源條件下夜間霧天圖像建模及去霧[J]. 電子與信息學報, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704

    YANG Aiping, WANG Nan, PANG Yanwei, et al. Nighttime haze removal based on new imaging model with artificial light sources[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1330–1337. doi: 10.11999/JEIT170704
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數(shù):  2363
  • HTML全文瀏覽量:  921
  • PDF下載量:  115
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-05-22
  • 修回日期:  2019-10-29
  • 網(wǎng)絡出版日期:  2019-11-12
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回