一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于多核最大均值差異遷移學(xué)習(xí)的WLAN室內(nèi)入侵檢測方法

周牧 李垚鲆 謝良波 蒲巧林 田增山

周牧, 李垚鲆, 謝良波, 蒲巧林, 田增山. 基于多核最大均值差異遷移學(xué)習(xí)的WLAN室內(nèi)入侵檢測方法[J]. 電子與信息學(xué)報(bào), 2020, 42(5): 1149-1157. doi: 10.11999/JEIT190358
引用本文: 周牧, 李垚鲆, 謝良波, 蒲巧林, 田增山. 基于多核最大均值差異遷移學(xué)習(xí)的WLAN室內(nèi)入侵檢測方法[J]. 電子與信息學(xué)報(bào), 2020, 42(5): 1149-1157. doi: 10.11999/JEIT190358
Mu ZHOU, Yaoping LI, Liangbo XIE, Qiaolin PU, Zengshan TIAN. WLAN Indoor Intrusion Detection Approach Based on Multiple Kernel Maximum Mean Discrepancy Transfer Learning[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1149-1157. doi: 10.11999/JEIT190358
Citation: Mu ZHOU, Yaoping LI, Liangbo XIE, Qiaolin PU, Zengshan TIAN. WLAN Indoor Intrusion Detection Approach Based on Multiple Kernel Maximum Mean Discrepancy Transfer Learning[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1149-1157. doi: 10.11999/JEIT190358

基于多核最大均值差異遷移學(xué)習(xí)的WLAN室內(nèi)入侵檢測方法

doi: 10.11999/JEIT190358 cstr: 32379.14.JEIT190358
基金項(xiàng)目: 國家自然科學(xué)基金(61771083),重慶市基礎(chǔ)與前沿研究計(jì)劃基金(cstc2017jcyjAX0380),重慶市研究生科研創(chuàng)新項(xiàng)目(CYS18240)
詳細(xì)信息
    作者簡介:

    周牧:男,1984年生,教授,博士生導(dǎo)師,主要研究方向?yàn)闊o線定位與導(dǎo)航技術(shù)、信號處理與檢測技術(shù)、機(jī)器學(xué)習(xí)與信息融合技術(shù)等

    李垚鲆:女,1995年生,碩士生,研究方向?yàn)槭覂?nèi)入侵檢測技術(shù)

    謝良波:男,1986年生,副教授,主要研究方向?yàn)樯漕l識別技術(shù)、室內(nèi)定位技術(shù)等

    蒲巧林:女,1988年生,助教,主要研究方向?yàn)闄C(jī)器學(xué)習(xí)、室內(nèi)定位技術(shù)等

    田增山:男,1968年生,教授,博士生導(dǎo)師,主要研究方向?yàn)橐苿油ㄐ拧€人通信、GPS及蜂窩網(wǎng)定位技術(shù)等

    通訊作者:

    李垚鲆 liyaopingna@foxmail.com

  • 中圖分類號: TN911.23

WLAN Indoor Intrusion Detection Approach Based on Multiple Kernel Maximum Mean Discrepancy Transfer Learning

Funds: The National Natural Science Foundation of China (61771083), The Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS18240)
  • 摘要:

    無線局域網(wǎng)(WLAN)室內(nèi)入侵檢測技術(shù)是目前智能檢測領(lǐng)域的研究熱點(diǎn)之一,而傳統(tǒng)基于數(shù)據(jù)庫構(gòu)建的入侵檢測技術(shù)沒有考慮復(fù)雜室內(nèi)環(huán)境中WLAN信號的時(shí)變性,從而導(dǎo)致WLAN室內(nèi)入侵檢測系統(tǒng)的魯棒性較差。為了解決這一問題,該文提出一種基于多核最大均值差異(MKMMD)遷移學(xué)習(xí)的WLAN室內(nèi)入侵檢測方法。該方法首先利用離線有標(biāo)記和在線偽標(biāo)記的接收信號強(qiáng)度(RSS)特征來分別構(gòu)建源域和目標(biāo)域;其次,通過構(gòu)造最優(yōu)遷移矩陣以最小化源域和目標(biāo)域RSS特征混合分布之間的MKMMD;再次,利用遷移后的源域RSS特征與對應(yīng)標(biāo)簽來訓(xùn)練分類器,并將其用于對遷移后的目標(biāo)域RSS特征進(jìn)行分類以得到目標(biāo)域標(biāo)簽集;最后,迭代更新目標(biāo)域標(biāo)簽集直至算法收斂,進(jìn)而實(shí)現(xiàn)對目標(biāo)環(huán)境的入侵檢測。實(shí)驗(yàn)結(jié)果表明,該文所提方法在保證較高檢測精度的同時(shí),能夠有效克服信號時(shí)變性對檢測性能的影響。

  • 圖  1  系統(tǒng)框圖

    圖  2  實(shí)驗(yàn)環(huán)境結(jié)構(gòu)圖

    圖  3  不同$\lambda $$q$取值下所提方法的檢測性能

    圖  4  不同$L$取值下的系統(tǒng)混淆矩陣

    圖  5  不同L取值下所提方法的檢測性能

    圖  6  不同$N$取值下所提方法的檢測性能

    圖  7  不同核函數(shù)下所提方法的檢測性能

    表  1  不同分類器的檢測性能(%)

    類別FPFNDA
    KNN(遷移前)35.92075.60
    KNN(遷移后)0099.78
    RF(遷移前)6.671.9283.96
    RF(遷移后)0098.90
    SVM(遷移前)18.02093.85
    SVM(遷移后)01.1098.02
    下載: 導(dǎo)出CSV

    表  2  不同方法的檢測性能(%)

    指標(biāo)RASIDPNNPRNN本文方法
    FP6.723.4200
    FN3.312.9200
    DA93.4694.4095.6099.78
    下載: 導(dǎo)出CSV
  • 周培培, 丁慶海, 羅海波, 等. 視頻監(jiān)控中的人群異常行為檢測與定位[J]. 光學(xué)學(xué)報(bào), 2018, 38(8): 0815007. doi: 10.3788/AOS201838.0815007

    ZHOU Peipei, DING Qinghai, LUO Haibo, et al. Anomaly detection and location in crowded surveillance videos[J]. Acta Optica Sinica, 2018, 38(8): 0815007. doi: 10.3788/AOS201838.0815007
    程衛(wèi)東, 董永貴. 利用熱釋電紅外傳感器探測人體運(yùn)動特征[J]. 儀器儀表學(xué)報(bào), 2008, 29(5): 1020–1023. doi: 10.3321/j.issn:0254-3087.2008.05.025

    CHENG Weidong and DONG Yonggui. Detection of human body motion features using pyroelectric infrared sensor[J]. Chinese Journal of Scientific Instrument, 2008, 29(5): 1020–1023. doi: 10.3321/j.issn:0254-3087.2008.05.025
    WANG Hongpeng, LIU Jingtai, SUN Lei, et al. Indoor intrusion detection using an intelligent sensor network[C]. 2008 IEEE World Congress on Intelligent Control and Automation, Chongqing, China, 2008: 2396–2401. doi: 10.1109/WCICA.2008.4593298.
    TIAN Zengshan, LI Yong, ZHOU Mu, et al. WiFi-based adaptive indoor passive intrusion detection[C]. 2018 IEEE 23rd International Conference on Digital Signal Processing, Shanghai, China, 2018: 1–5. doi: 10.1109/ICDSP.2018.8631613.
    YOUSSEF M, MAH M, and AGRAWALA A. Challenges: Device-free passive localization for wireless environments[C]. The 13th Annual ACM International Conference on Mobile Computing and Networking, Montréal, Canada, 2007: 222–229. doi: 10.1145/1287853.1287880.
    ZHOU Rui, CHEN Jiesong, LU Xiang, et al. CSI fingerprinting with SVM regression to achieve device-free passive localization[C]. The 18th IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks, Macau, China, 2017: 1–9. doi: 10.1109/WoWMoM.2017.7974313.
    KOSBA A E, SAEED A, and YOUSSEF M. RASID: A robust WLAN device-free passive motion detection system[C]. 2012 IEEE International Conference on Pervasive Computing and Communications, Lugano, Switzerland, 2012: 180–189. doi: 10.1109/PerCom.2012.6199865.
    TIAN Zengshan, ZHOU Xiangdong, ZHOU Mu, et al. Indoor device-free passive localization for intrusion detection using multi-feature PNN[C]. 2015 International Conference on Communications and Networking in China, Shanghai, China, 2015: 272–277. doi: 10.1109/CHINACOM.2015.7497950.
    DEAK G, CURRAN K, CONDELL J, et al. Detection of multi-occupancy using device-free passive localisation[J]. IET Wireless Sensor Systems, 2014, 4(3): 130–137. doi: 10.1049/iet-wss.2013.0031
    LV Jiguang, MAN Dapeng, YANG Wu, et al. Robust WLAN-based indoor intrusion detection using PHY layer information[J]. IEEE Access, 2018, 6: 30117–30127. doi: 10.1109/access.2017.2785444
    TAN Qingqing, HAN Chong, SUN Lijuan, et al. A CSI frequency domain fingerprint-based method for passive indoor human detection[C]. 2018 IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering, New York, USA, 2018: 1832–1837. doi: 10.1109/TrustCom/BigDataSE.2018.00277.
    GRETTON A, SRIPERUMBUDUR B, SEJDINOVIC D, et al. Optimal kernel choice for large-scale two-sample tests[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1205–1213.
    LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer feature learning with joint distribution adaptation[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2200–2207. doi: 10.1109/ICCV.2013.274.
    DUAN Lixin, TSANG I W, and XU Dong. Domain transfer multiple kernel learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465–479. doi: 10.1109/tpami.2011.114
    BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating structured biological data by kernel maximum mean discrepancy[J]. Bioinformatics, 2006, 22(4): e49–e57. doi: 10.1093/bioinformatics/btl242
    PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199–210. doi: 10.1109/TNN.2010.2091281
    SCHOLK?PF B, SMOLA A, and MüLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299–1319. doi: 10.1162/089976698300017467
    汪洪橋, 孫富春, 蔡艷寧, 等. 多核學(xué)習(xí)方法[J]. 自動化學(xué)報(bào), 2010, 36(8): 1037–1050. doi: 10.3724/SP.J.1004.2010.01037

    WANG Hongqiao, SUN Fuchun, CAI Yanning, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8): 1037–1050. doi: 10.3724/SP.J.1004.2010.01037
    COVER T and HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21–27. doi: 10.1109/TIT.1967.1053964
    BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5–32. doi: 10.1023/A:1010933404324
    CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018
  • 加載中
圖(7) / 表(2)
計(jì)量
  • 文章訪問數(shù):  3862
  • HTML全文瀏覽量:  1920
  • PDF下載量:  136
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-05-21
  • 修回日期:  2019-11-27
  • 網(wǎng)絡(luò)出版日期:  2019-12-18
  • 刊出日期:  2020-06-04

目錄

    /

    返回文章
    返回