時(shí)間反轉(zhuǎn)多用戶系統(tǒng)中保密和速率優(yōu)化的預(yù)處理濾波器設(shè)計(jì)
doi: 10.11999/JEIT190339 cstr: 32379.14.JEIT190339
-
重慶郵電大學(xué)通信與信息工程學(xué)院 重慶 400065
Pre-filter Design for Sum Secrecy Rate Optimization in Time-reversal Multiuser Systems
-
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunication, Chongqing 400065, China
-
摘要:
利用無線信道的特征通過物理層技術(shù)實(shí)現(xiàn)信息的安全傳輸是保密通信的一種方式。時(shí)間反轉(zhuǎn)傳輸特有的時(shí)空聚焦特性使其具有天然的抗干擾和抗竊聽能力,在單發(fā)射天線條件下也能獲得較好的保密傳輸性能。該文研究兩用戶時(shí)間反轉(zhuǎn)下行多址安全傳輸系統(tǒng)中,發(fā)送濾波器脈沖響應(yīng)的優(yōu)化問題。根據(jù)互惠原則將兩個發(fā)送濾波器的聯(lián)合優(yōu)化問題轉(zhuǎn)換為各濾波器的獨(dú)立優(yōu)化問題,進(jìn)一步將其轉(zhuǎn)換為尋找最大特征值及其對應(yīng)的特征向量的問題,并通過迭代算法進(jìn)行求解。仿真結(jié)果表明,針對保密和速率優(yōu)化預(yù)處理濾波器后,系統(tǒng)的可達(dá)保密速率明顯優(yōu)于采用常規(guī)時(shí)間反轉(zhuǎn)預(yù)處理濾波器時(shí)的系統(tǒng)和直接傳輸系統(tǒng)。
-
關(guān)鍵詞:
- 物理層安全 /
- 時(shí)間反轉(zhuǎn) /
- 保密和速率 /
- 預(yù)處理濾波器
Abstract:Utilizing the characteristics of the wireless channel to achieve secure transmission of information through physical layer technology is a way to realize security communications. The time-reversed transmission has natural anti-jamming and anti-eavesdropping capability due to its unique spatial and temporal focusing property, so a good secrecy performance can be obtained even when the transmitter is equipped with single transmitting antenna. This paper studies the optimization of the transmit filter impulse response in a two-user time-reversed downlink multiple access secure transmission system. The joint optimization problem of two transmitting filters is transformed into the independent optimization problem of each filter based on reciprocity principles. This problem is further converted into the problem of finding the largest eigenvalue and its corresponding eigenvector which is solved by iterative algorithm. The simulation results show that by optimizing the pre-filter for sum secrecy rate, the system's sum secrecy rate is promoted and is obviously higher than that of the conventional time-reversed pre-processing filter system and direct transmission system.
-
Key words:
- Physical layer security /
- Time reversal /
- Sum secrecy rate /
- Pre-processing filter
-
表 1 最大特征值求解迭代算法
(1) k=0,設(shè)置初始點(diǎn)${{g}}_i^{(0)}$ (2) 循環(huán) (3) k:=k+1 (4) 根${{g}}_i^{(k - 1)}$計(jì)算矩陣V和Q; (5) 求解Q–1V的最大特征值$\lambda _i^{\left( k \right)}$以及對應(yīng)的歸一化特征向量
${{g}}_i^{(k - 1)}$;(6) 判斷$\left| {\lambda _i^{(k)} - \lambda _i^{(k - 1)} } \right| \le \varepsilon $是否滿足,或者是否達(dá)到迭代次
數(shù),是跳出循環(huán),否則轉(zhuǎn)第(3)步繼續(xù)迭代;(7) 輸出優(yōu)化問題解${{{\bar g}}_i} = {{g}}_i^{(k)}$。 下載: 導(dǎo)出CSV
-
CHEN Xiaoming, NG D W K, GERSTACKER W H, et al. A survey on multiple-antenna techniques for physical layer security[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 1027–1053. doi: 10.1109/COMST.2016.2633387 ZHAO Pu, ZHANG Meng, YU Hui, et al. Robust beamforming design for sum secrecy rate optimization in MU-MISO networks[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(9): 1812–1823. doi: 10.1109/TIFS.2015.2423263 NGHIA N T, TUAN H D, DUONG T Q, et al. MIMO beamforming for secure and energy-efficient wireless communication[J]. IEEE Signal Processing Letters, 2017, 24(2): 236–239. doi: 10.1109/LSP.2017.2647982 HUO Yan, TIAN Yuqi, MA Liran, et al. Jamming strategies for physical layer security[J]. IEEE Wireless Communications, 2018, 25(1): 148–153. doi: 10.1109/MWC.2017.1700015 WANG Beibei, WU Yongle, HAN Feng, et al. Green wireless communications: A time-reversal paradigm[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(8): 1698–1710. doi: 10.1109/JSAC.2011.110918 BOUZIGUES M A, SIAUD I, HELARD M, et al. Turn back the clock: Time reversal for green radio communications[J]. IEEE Vehicular Technology Magazine, 2013, 8(1): 49–56. doi: 10.1109/MVT.2012.2234054 LEI Weijia and YAO Li. Performance analysis of time reversal communication systems[J]. IEEE Communications Letters, 2019, 23(4): 680–683. doi: 10.1109/LCOMM.2019.2901484 NGUYEN H T, KOVCS I Z, and EGGERS P C F. A time reversal transmission approach for multiuser UWB communications[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(11): 3216–3224. doi: 10.1109/TAP.2006.883959 HAN Feng, YANG Yuhan, WANG Beibei, et al. Time-reversal division multiple access over multi-path channels[J]. IEEE Transactions on Communications, 2012, 60(7): 1953–1965. doi: 10.1109/TCOMM.2012.051012.110531 HAN Yi, CHEN Yan, WANG Beibei, et al. , Time-reversal massive multipath effect: A single-antenna “massive MIMO” solution[J]. IEEE Transactions on Communications, 2016, 64(8): 3382–3394. doi: 10.1109/TCOMM.2016.2584051 WANG Li, LI Ruoguang, CAO Chunyan, et al. SNR analysis of time reversal signaling on target and unintended receivers in distributed transmission[J]. IEEE Transactions on Communications, 2016, 64(5): 2176–2191. doi: 10.1109/TCOMM.2016.2547425 CAO Wei, LEI Jing, HU Weidong, et al. Secrecy capacity achievable time reversal pre-filter in MISO communication system and the unequal secrecy protection application[J]. Wireless Personal Communications, 2017, 97(4): 5427–5437. doi: 10.1007/s11277-017-4787-x XU Qian, REN Pinyi, DU Qinghe, et al. Security-aware waveform and artificial noise design for time-reversal-based transmission[J]. IEEE Transactions on Vehicular Technology, 2018, 67(6): 5486–5490. doi: 10.1109/TVT.2018.2813318 LEE N, YANG H J, and CHUN J. Achievable sum-rate maximizing AF relay beamforming scheme in two-way relay channels[C]. ICC Workshops-2008 IEEE International Conference on Communications Workshops, Beijing, China, 2008: 300–305. doi: 10.1109/ICCW.2008.63. -