一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

一種基于資源傳輸路徑拓撲有效性的鏈路預測方法

王凱 李星 蘭巨龍 衛(wèi)紅權 劉樹新

王凱, 李星, 蘭巨龍, 衛(wèi)紅權, 劉樹新. 一種基于資源傳輸路徑拓撲有效性的鏈路預測方法[J]. 電子與信息學報, 2020, 42(3): 653-660. doi: 10.11999/JEIT190333
引用本文: 王凱, 李星, 蘭巨龍, 衛(wèi)紅權, 劉樹新. 一種基于資源傳輸路徑拓撲有效性的鏈路預測方法[J]. 電子與信息學報, 2020, 42(3): 653-660. doi: 10.11999/JEIT190333
Kai WANG, Xing LI, Julong LAN, Hongquan WEI, Shuxin LIU. A New Link Prediction Method for Complex Networks Based onTopological Effectiveness of Resource Transmission Paths[J]. Journal of Electronics & Information Technology, 2020, 42(3): 653-660. doi: 10.11999/JEIT190333
Citation: Kai WANG, Xing LI, Julong LAN, Hongquan WEI, Shuxin LIU. A New Link Prediction Method for Complex Networks Based onTopological Effectiveness of Resource Transmission Paths[J]. Journal of Electronics & Information Technology, 2020, 42(3): 653-660. doi: 10.11999/JEIT190333

一種基于資源傳輸路徑拓撲有效性的鏈路預測方法

doi: 10.11999/JEIT190333 cstr: 32379.14.JEIT190333
基金項目: 國家自然科學基金(61803384),國家自然科學基金創(chuàng)新研究群體項目(61521003)
詳細信息
    作者簡介:

    王凱:男,1980年生,副研究員,博士生,研究方向為鏈路預測、社會網(wǎng)絡分析

    李星:男,1987年生,助理研究員,博士生,研究方向為鏈路預測

    蘭巨龍:男,1962年生,教授,博士生導師,研究方向為新型網(wǎng)絡體系,網(wǎng)絡動力學

    衛(wèi)紅權:男,1970年生,副研究員,碩士生導師,研究方向為社團發(fā)現(xiàn)

    劉樹新:男,1987年生,助理研究員,博士,研究方向為復雜網(wǎng)絡演化、鏈路預測

    通訊作者:

    劉樹新 liushuxin11@126.com, liushuxin11@gmail.com

  • 中圖分類號: TN915, TP391

A New Link Prediction Method for Complex Networks Based onTopological Effectiveness of Resource Transmission Paths

Funds: The National Natural Science Foundation of China (61803384), The National Natural Science Foundation Innovation Research Group Project of China (61521003)
  • 摘要:

    鏈路預測旨在利用網(wǎng)絡中已有的拓撲結構或其他信息,預測未連邊節(jié)點間存在連接的可能性。資源分配指標具有較低復雜度的同時取得了較好的預測效果,但在資源傳輸過程的描述中缺少對路徑有效性的刻畫。資源傳輸過程是網(wǎng)絡演化連邊產(chǎn)生的重要內(nèi)在動力,通過分析節(jié)點間資源傳輸路徑周圍拓撲的有效性,該文提出一種基于資源傳輸路徑有效性的鏈路預測方法。該方法首先分析了節(jié)點間潛在的資源傳輸路徑對資源傳輸量的影響,提出資源傳輸路徑有效性的量化方法。然后,基于資源傳輸路徑的有效性,通過對雙向資源傳輸量進行刻畫,提出了節(jié)點間傳輸路徑的有效性指標。在12個實際網(wǎng)絡數(shù)據(jù)集上的實驗測試表明,相比其他基于相似性的鏈路預測方法,該方法在AUC和Precision衡量標準下能夠取得更好的效果。

  • 圖  1  網(wǎng)絡中節(jié)點間多路徑傳輸示意圖

    圖  2  網(wǎng)絡拓撲結構與路徑傳輸有效性的關系示意圖

    圖  3  不同網(wǎng)絡結構下路徑數(shù)目對比分析

    圖  4  不同網(wǎng)絡結構下路徑有效性對比分析

    圖  5  存在直接連接的兩點之間路徑有效性的量化

    圖  6  未直接連接的兩點之間路徑有效性的量化

    圖  7  節(jié)點xy傳輸路徑有效性量化舉例

    圖  8  節(jié)點yx傳輸路徑有效性量化舉例

    圖  9  調(diào)節(jié)參數(shù)對AUC結果的影響曲線圖

    圖  10  強度參數(shù)對Pre結果影響曲線圖

    表  1  網(wǎng)絡數(shù)據(jù)特征參數(shù)

    網(wǎng)絡AIDSFWEWHSFigeysUCMetbolic
    節(jié)點數(shù)14669185822391899453
    邊數(shù)180880125346432138382025
    集聚系數(shù)2.4725.5113.495.7614.578.94
    平均度3.421.643.393.983.062.66
    平均路徑–0.725–0.298–0.085–0.331–0.188–0.226
    匹配系數(shù)0.0520.5520.09040.040.1090.647
    下載: 導出CSV

    表  2  AUC結果對比分析

    方法AIDSFWEWHSFigeysUCMetbolic
    CN0.5990.6840.8120.5660.7810.921
    RA0.6090.7020.8160.5700.7870.959
    AA0.6090.6950.8150.5690.7870.955
    CAR0.5990.6850.8120.5670.7830.920
    LP(a)0.8360.7020.9330.8880.8930.920
    LP(b)0.8330.7280.9400.9030.9030.921
    Katz(a)0.8540.7040.9330.8870.8930.920
    Katz(b)0.8520.7340.9370.8980.9030.920
    ACT0.9540.7790.8680.9170.8960.767
    Cos+0.5910.5100.9600.8440.8690.904
    本文方法0.9610.8270.9710.9520.9290.964
    (a)可調(diào)參數(shù)$\alpha {\rm{ = 0}}{\rm{.001}}$ (b)可調(diào)參數(shù)$\alpha {\rm{ = 0}}{\rm{.01}}$
    下載: 導出CSV

    表  3  Pre結果對比

    方法AIDSFWEWHSFigeysUCMetbolic
    CN0.0190.1430.0170.0110.0340.202
    RA0.0280.1650.0080.0120.0260.319
    AA0.0280.1520.0120.0120.0330.252
    CAR0.0190.1370.0330.0250.0640.193
    LP(a)0.0550.1530.0210.0110.0340.202
    LP(b)0.0550.1800.0550.0120.0530.200
    Katz(a)0.0550.1530.0210.0100.0340.202
    Katz(b)0.0550.1830.0710.0110.0540.198
    ACT0.0000.1280.0000.0000.0000.000
    Cos+0.0000.0000.0150.0050.0100.097
    本文方法0.0680.3440.1070.1300.0930.374
    (a)可調(diào)參數(shù)$\alpha {\rm{ = 0}}{\rm{.001}}$ (b)可調(diào)參數(shù)$\alpha {\rm{ = 0}}{\rm{.01}}$
    下載: 導出CSV
  • WANG Minggang, ZHAO Longfeng, DU Ruijin, et al. A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms[J]. Applied Energy, 2018, 220: 480–495. doi: 10.1016/j.apenergy.2018.03.148
    GOSAK M, MARKOVI? R, DOLEN?EK J, et al. Network science of biological systems at different scales: A review[J]. Physics of Life Reviews, 2018, 24: 118–135. doi: 10.1016/j.plrev.2017.11.003
    DU Wenbo, ZHANG Mingyuan, YING Wen, et al. The networked evolutionary algorithm: A network science perspective[J]. Applied Mathematics and Computation, 2018, 338: 33–43. doi: 10.1016/j.amc.2018.06.002
    CHEN Zhenhao, WU Jiajing, XIA Yongxiang, et al. Robustness of interdependent power grids and communication networks: A complex network perspective[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(1): 115–119. doi: 10.1109/TCSII.2017.2705758
    王凱, 劉樹新, 陳鴻昶, 等. 一種基于節(jié)點間資源承載度的鏈路預測方法[J]. 電子與信息學報, 2019, 41(5): 1225–1234. doi: 10.11999/JEIT180553

    WANG Kai, LIU Shuxin, CHEN Hongchang, et al. A new link prediction method for complex networks based on resources carrying capacity between nodes[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1225–1234. doi: 10.11999/JEIT180553
    BENSON A R, ABEBE R, SCHAUB M T, et al. Simplicial closure and higher-order link prediction[J]. The National Academy of Sciences of the United States of America, 2018, 115(48): E11221–E11230. doi: 10.1073/pnas.1800683115
    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Similarity indices based on link weight assignment for link prediction of unweighted complex networks[J]. International Journal of Modern Physics B, 2017, 31(2): 1650254. doi: 10.1142/S0217979216502544
    LORRAIN F and WHITE H C. Structural Equivalence of Individuals in Social Networks[M]. LEINHARDT S. Social Networks: A Developing Paradigm. Lausanne: Academic Press, 1977: 67-98. doi: 10.1080/0022250X.1971.9989788.
    ZHOU Tao, Lü Linyuan, and ZHANG Yicheng. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623–630. doi: 10.1140/epjb/e2009-00335-8
    ADAMIC L A and ADAR E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3): 211–230. doi: 10.1016/S0378-8733(03)00009-1
    CANNISTRACI C V, ALANIS-LOBATO G, and RAVASI T. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks[J]. Scientific Reports, 2013, 3: 1613. doi: 10.1038/srep01613
    XIE Yanbo, ZHOU Tao, and WANG Binhong. Scale-free networks without growth[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(7): 1683–1688. doi: 10.1016/j.physa.2007.11.005
    SALTON G and MCGILL M J. Introduction to Modern Information Retrieval[M]. New York: McGraw-Hill, 1986.
    Lü Linyuan, JIN Cihang, and ZHOU Tao. Similarity index based on local paths for link prediction of complex networks[J]. Physical Review E, 2009, 80(4): 046122. doi: 10.1103/PhysRevE.80.046122
    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Extended resource allocation index for link prediction of complex network[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 479: 174–183. doi: 10.1016/j.physa.2017.02.078
    KATZ L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1): 39–43. doi: 10.1007/BF02289026
    KLEIN D J and RANDI? M. Resistance distance[J]. Journal of Mathematical Chemistry, 1993, 12(1): 81–95. doi: 10.1007/BF01164627
    FOUSS F, PIROTTE A, RENDERS J M, et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(3): 355–369. doi: 10.1109/tkde.2007.46
    BRIN S and PAGE L. The anatomy of a large-scale hypertextual Web search engine[J]. Computer Networks and ISDN Systems, 1998, 30(1/7): 107–117. doi: 10.1016/s0169-7552(98)00110-x
    YANG Dingda, LIAO Xiangwen, SHEN Huawei, et al. Dynamic node immunization for restraint of harmful information diffusion in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 503: 640–649. doi: 10.1016/j.physa.2018.02.128
    劉樹新, 季新生, 劉彩霞, 等. 一種信息傳播促進網(wǎng)絡增長的網(wǎng)絡演化模型[J]. 物理學報, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. A complex network evolution model for network growth promoted by information transmission[J]. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    YAO Yabing, ZHANG Ruisheng, YANG Fan, et al. Link prediction in complex networks based on the interactions among paths[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 510: 52–67. doi: 10.1016/j.physa.2018.06.051
    LIU Liang, QU Bo, CHEN Bin, et al. Modelling of information diffusion on social networks with applications to WeChat[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 496: 318–329. doi: 10.1016/j.physa.2017.12.026
    SATHIYAKUMARI K and VIJAYA M S. Identification of Subgroups in a Directed Social Network Using Edge Betweenness and Random Walks[M]. SATAPATHY S C, BHATEJA V, and DAS S. Smart Computing and Informatics. Singapore: Springer, 2018: 115-125. doi: 10.1007/978-981-10-5544-7_12.
    WU Yiteng, YU Hongtao, ZHANG Jianpeng, et al. USI-AUC: An evaluation criterion of community detection based on a novel link-prediction method[J]. Intelligent Data Analysis, 2018, 22(2): 439–462. doi: 10.3233/IDA-173400
    CHUAN P M, SON L H, ALI M, et al. Link prediction in co-authorship networks based on hybrid content similarity metric[J]. Applied Intelligence, 2018, 48(8): 2470–2486. doi: 10.1007/s10489-017-1086-x
  • 加載中
圖(10) / 表(3)
計量
  • 文章訪問數(shù):  2322
  • HTML全文瀏覽量:  978
  • PDF下載量:  98
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-09-10
  • 網(wǎng)絡出版日期:  2019-09-19
  • 刊出日期:  2020-03-19

目錄

    /

    返回文章
    返回