一種基于資源傳輸路徑拓撲有效性的鏈路預測方法
doi: 10.11999/JEIT190333 cstr: 32379.14.JEIT190333
-
國家數(shù)字交換系統(tǒng)工程技術研究中心 鄭州 450002
A New Link Prediction Method for Complex Networks Based onTopological Effectiveness of Resource Transmission Paths
-
National Digital Switching System Engineering and Technological R&D Center, Zhengzhou 450002, China
-
摘要:
鏈路預測旨在利用網(wǎng)絡中已有的拓撲結構或其他信息,預測未連邊節(jié)點間存在連接的可能性。資源分配指標具有較低復雜度的同時取得了較好的預測效果,但在資源傳輸過程的描述中缺少對路徑有效性的刻畫。資源傳輸過程是網(wǎng)絡演化連邊產(chǎn)生的重要內(nèi)在動力,通過分析節(jié)點間資源傳輸路徑周圍拓撲的有效性,該文提出一種基于資源傳輸路徑有效性的鏈路預測方法。該方法首先分析了節(jié)點間潛在的資源傳輸路徑對資源傳輸量的影響,提出資源傳輸路徑有效性的量化方法。然后,基于資源傳輸路徑的有效性,通過對雙向資源傳輸量進行刻畫,提出了節(jié)點間傳輸路徑的有效性指標。在12個實際網(wǎng)絡數(shù)據(jù)集上的實驗測試表明,相比其他基于相似性的鏈路預測方法,該方法在AUC和Precision衡量標準下能夠取得更好的效果。
-
關鍵詞:
- 復雜網(wǎng)絡 /
- 鏈路預測 /
- 資源傳輸路徑 /
- 有效性
Abstract:Link prediction considers to discover the unknown or missing links of complex networks by using the existing topology or other information. Resource Allocation index can achieve a good performance with low complexity. However, it ignores the path effectiveness of resource transmission process. The resource transmission process is an important internal driving force for the evolution of the network. By analyzing the effectiveness of the topology around the resource transmission path between nodes, a link prediction method based on topological effectiveness of resource transmission paths is proposed. Firstly, the influence of potential resource transmission paths between nodes on resource transmission is analyzed, and a quantitative method for resource transmission path effectiveness is proposed. Then, based on the effectiveness of the resource transmission path, after studying the two-way resource transmission amount between two nodes, the transmission path effectiveness index is proposed. The experimental results of 12 real networks show that compared with other link prediction methods, the proposed method can achieve higher prediction accuracy under the AUC and Precision metrics.
-
Key words:
- Complex network /
- Link prediction /
- Resource transmission path /
- Effectiveness
-
表 1 網(wǎng)絡數(shù)據(jù)特征參數(shù)
網(wǎng)絡 AIDS FWEW HS Figeys UC Metbolic 節(jié)點數(shù) 146 69 1858 2239 1899 453 邊數(shù) 180 880 12534 6432 13838 2025 集聚系數(shù) 2.47 25.51 13.49 5.76 14.57 8.94 平均度 3.42 1.64 3.39 3.98 3.06 2.66 平均路徑 –0.725 –0.298 –0.085 –0.331 –0.188 –0.226 匹配系數(shù) 0.052 0.552 0.0904 0.04 0.109 0.647 下載: 導出CSV
表 2 AUC結果對比分析
方法 AIDS FWEW HS Figeys UC Metbolic CN 0.599 0.684 0.812 0.566 0.781 0.921 RA 0.609 0.702 0.816 0.570 0.787 0.959 AA 0.609 0.695 0.815 0.569 0.787 0.955 CAR 0.599 0.685 0.812 0.567 0.783 0.920 LP(a) 0.836 0.702 0.933 0.888 0.893 0.920 LP(b) 0.833 0.728 0.940 0.903 0.903 0.921 Katz(a) 0.854 0.704 0.933 0.887 0.893 0.920 Katz(b) 0.852 0.734 0.937 0.898 0.903 0.920 ACT 0.954 0.779 0.868 0.917 0.896 0.767 Cos+ 0.591 0.510 0.960 0.844 0.869 0.904 本文方法 0.961 0.827 0.971 0.952 0.929 0.964 (a)可調(diào)參數(shù)$\alpha {\rm{ = 0}}{\rm{.001}}$ (b)可調(diào)參數(shù)$\alpha {\rm{ = 0}}{\rm{.01}}$ 下載: 導出CSV
表 3 Pre結果對比
方法 AIDS FWEW HS Figeys UC Metbolic CN 0.019 0.143 0.017 0.011 0.034 0.202 RA 0.028 0.165 0.008 0.012 0.026 0.319 AA 0.028 0.152 0.012 0.012 0.033 0.252 CAR 0.019 0.137 0.033 0.025 0.064 0.193 LP(a) 0.055 0.153 0.021 0.011 0.034 0.202 LP(b) 0.055 0.180 0.055 0.012 0.053 0.200 Katz(a) 0.055 0.153 0.021 0.010 0.034 0.202 Katz(b) 0.055 0.183 0.071 0.011 0.054 0.198 ACT 0.000 0.128 0.000 0.000 0.000 0.000 Cos+ 0.000 0.000 0.015 0.005 0.010 0.097 本文方法 0.068 0.344 0.107 0.130 0.093 0.374 (a)可調(diào)參數(shù)$\alpha {\rm{ = 0}}{\rm{.001}}$ (b)可調(diào)參數(shù)$\alpha {\rm{ = 0}}{\rm{.01}}$ 下載: 導出CSV
-
WANG Minggang, ZHAO Longfeng, DU Ruijin, et al. A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms[J]. Applied Energy, 2018, 220: 480–495. doi: 10.1016/j.apenergy.2018.03.148 GOSAK M, MARKOVI? R, DOLEN?EK J, et al. Network science of biological systems at different scales: A review[J]. Physics of Life Reviews, 2018, 24: 118–135. doi: 10.1016/j.plrev.2017.11.003 DU Wenbo, ZHANG Mingyuan, YING Wen, et al. The networked evolutionary algorithm: A network science perspective[J]. Applied Mathematics and Computation, 2018, 338: 33–43. doi: 10.1016/j.amc.2018.06.002 CHEN Zhenhao, WU Jiajing, XIA Yongxiang, et al. Robustness of interdependent power grids and communication networks: A complex network perspective[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(1): 115–119. doi: 10.1109/TCSII.2017.2705758 王凱, 劉樹新, 陳鴻昶, 等. 一種基于節(jié)點間資源承載度的鏈路預測方法[J]. 電子與信息學報, 2019, 41(5): 1225–1234. doi: 10.11999/JEIT180553WANG Kai, LIU Shuxin, CHEN Hongchang, et al. A new link prediction method for complex networks based on resources carrying capacity between nodes[J]. Journal of Electronics &Information Technology, 2019, 41(5): 1225–1234. doi: 10.11999/JEIT180553 BENSON A R, ABEBE R, SCHAUB M T, et al. Simplicial closure and higher-order link prediction[J]. The National Academy of Sciences of the United States of America, 2018, 115(48): E11221–E11230. doi: 10.1073/pnas.1800683115 LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Similarity indices based on link weight assignment for link prediction of unweighted complex networks[J]. International Journal of Modern Physics B, 2017, 31(2): 1650254. doi: 10.1142/S0217979216502544 LORRAIN F and WHITE H C. Structural Equivalence of Individuals in Social Networks[M]. LEINHARDT S. Social Networks: A Developing Paradigm. Lausanne: Academic Press, 1977: 67-98. doi: 10.1080/0022250X.1971.9989788. ZHOU Tao, Lü Linyuan, and ZHANG Yicheng. Predicting missing links via local information[J]. The European Physical Journal B, 2009, 71(4): 623–630. doi: 10.1140/epjb/e2009-00335-8 ADAMIC L A and ADAR E. Friends and neighbors on the web[J]. Social Networks, 2003, 25(3): 211–230. doi: 10.1016/S0378-8733(03)00009-1 CANNISTRACI C V, ALANIS-LOBATO G, and RAVASI T. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks[J]. Scientific Reports, 2013, 3: 1613. doi: 10.1038/srep01613 XIE Yanbo, ZHOU Tao, and WANG Binhong. Scale-free networks without growth[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(7): 1683–1688. doi: 10.1016/j.physa.2007.11.005 SALTON G and MCGILL M J. Introduction to Modern Information Retrieval[M]. New York: McGraw-Hill, 1986. Lü Linyuan, JIN Cihang, and ZHOU Tao. Similarity index based on local paths for link prediction of complex networks[J]. Physical Review E, 2009, 80(4): 046122. doi: 10.1103/PhysRevE.80.046122 LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Extended resource allocation index for link prediction of complex network[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 479: 174–183. doi: 10.1016/j.physa.2017.02.078 KATZ L. A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18(1): 39–43. doi: 10.1007/BF02289026 KLEIN D J and RANDI? M. Resistance distance[J]. Journal of Mathematical Chemistry, 1993, 12(1): 81–95. doi: 10.1007/BF01164627 FOUSS F, PIROTTE A, RENDERS J M, et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(3): 355–369. doi: 10.1109/tkde.2007.46 BRIN S and PAGE L. The anatomy of a large-scale hypertextual Web search engine[J]. Computer Networks and ISDN Systems, 1998, 30(1/7): 107–117. doi: 10.1016/s0169-7552(98)00110-x YANG Dingda, LIAO Xiangwen, SHEN Huawei, et al. Dynamic node immunization for restraint of harmful information diffusion in social networks[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 503: 640–649. doi: 10.1016/j.physa.2018.02.128 劉樹新, 季新生, 劉彩霞, 等. 一種信息傳播促進網(wǎng)絡增長的網(wǎng)絡演化模型[J]. 物理學報, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902LIU Shuxin, JI Xinsheng, LIU Caixia, et al. A complex network evolution model for network growth promoted by information transmission[J]. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902 YAO Yabing, ZHANG Ruisheng, YANG Fan, et al. Link prediction in complex networks based on the interactions among paths[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 510: 52–67. doi: 10.1016/j.physa.2018.06.051 LIU Liang, QU Bo, CHEN Bin, et al. Modelling of information diffusion on social networks with applications to WeChat[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 496: 318–329. doi: 10.1016/j.physa.2017.12.026 SATHIYAKUMARI K and VIJAYA M S. Identification of Subgroups in a Directed Social Network Using Edge Betweenness and Random Walks[M]. SATAPATHY S C, BHATEJA V, and DAS S. Smart Computing and Informatics. Singapore: Springer, 2018: 115-125. doi: 10.1007/978-981-10-5544-7_12. WU Yiteng, YU Hongtao, ZHANG Jianpeng, et al. USI-AUC: An evaluation criterion of community detection based on a novel link-prediction method[J]. Intelligent Data Analysis, 2018, 22(2): 439–462. doi: 10.3233/IDA-173400 CHUAN P M, SON L H, ALI M, et al. Link prediction in co-authorship networks based on hybrid content similarity metric[J]. Applied Intelligence, 2018, 48(8): 2470–2486. doi: 10.1007/s10489-017-1086-x -