一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問(wèn)題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

基于云霧混合計(jì)算的車聯(lián)網(wǎng)聯(lián)合資源分配算法

唐倫 肖嬌 魏延南 趙國(guó)繁 陳前斌

唐倫, 肖嬌, 魏延南, 趙國(guó)繁, 陳前斌. 基于云霧混合計(jì)算的車聯(lián)網(wǎng)聯(lián)合資源分配算法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1926-1933. doi: 10.11999/JEIT190306
引用本文: 唐倫, 肖嬌, 魏延南, 趙國(guó)繁, 陳前斌. 基于云霧混合計(jì)算的車聯(lián)網(wǎng)聯(lián)合資源分配算法[J]. 電子與信息學(xué)報(bào), 2020, 42(8): 1926-1933. doi: 10.11999/JEIT190306
Lun TANG, Jiao XIAO, Yannan WEI, Guofan ZHAO, Qianbin CHEN. Joint Resource Allocation Algorithms Based on Mixed Cloud/Fog Computing in Vehicular Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1926-1933. doi: 10.11999/JEIT190306
Citation: Lun TANG, Jiao XIAO, Yannan WEI, Guofan ZHAO, Qianbin CHEN. Joint Resource Allocation Algorithms Based on Mixed Cloud/Fog Computing in Vehicular Network[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1926-1933. doi: 10.11999/JEIT190306

基于云霧混合計(jì)算的車聯(lián)網(wǎng)聯(lián)合資源分配算法

doi: 10.11999/JEIT190306 cstr: 32379.14.JEIT190306
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61571073),重慶市教委科學(xué)技術(shù)研究項(xiàng)目(KJZD-M201800601)
詳細(xì)信息
    作者簡(jiǎn)介:

    唐倫:男,1973年生,教授,博士生導(dǎo)師,主要研究方向?yàn)樾乱淮鸁o(wú)線通信網(wǎng)絡(luò)、異構(gòu)蜂窩網(wǎng)絡(luò)等

    肖嬌:女,1995年生,碩士生,研究方向?yàn)榉涓C車聯(lián)網(wǎng)絡(luò)下的資源調(diào)度算法

    魏延南:男,1995年生,碩士生,研究方向?yàn)?G網(wǎng)絡(luò)切片、虛擬資源分配、隨機(jī)優(yōu)化理論

    趙國(guó)繁:女,1993年生,碩士生,研究方向?yàn)?G網(wǎng)絡(luò)切片中的資源分配,可靠性

    陳前斌:男,1967年生,教授,博士生導(dǎo)師,主要研究方向?yàn)閭€(gè)人通信、多媒體信息處理與傳輸、下一代移動(dòng)通信網(wǎng)絡(luò)、異構(gòu)蜂窩網(wǎng)絡(luò)等

    通訊作者:

    肖嬌 Ir_xiao@163.com

  • 中圖分類號(hào): TN929.5

Joint Resource Allocation Algorithms Based on Mixed Cloud/Fog Computing in Vehicular Network

Funds: The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要:

    針對(duì)車聯(lián)網(wǎng)業(yè)務(wù)的低時(shí)延、低功耗需求及海量設(shè)備計(jì)算卸載引起的網(wǎng)絡(luò)擁塞問(wèn)題,該文提出一種在云霧混合網(wǎng)絡(luò)架構(gòu)下的聯(lián)合計(jì)算卸載、計(jì)算資源和無(wú)線資源分配算法(JODRAA)。首先,該算法考慮將云計(jì)算與霧計(jì)算結(jié)合,以最大時(shí)延作為約束,建立最小化系統(tǒng)能耗和資源成本的資源優(yōu)化模型。其次,將原問(wèn)題轉(zhuǎn)化為標(biāo)準(zhǔn)二次約束二次規(guī)劃(QCQP)問(wèn)題,并設(shè)計(jì)一種低復(fù)雜度的聯(lián)合卸載決策和計(jì)算資源分配算法。進(jìn)一步,針對(duì)海量設(shè)備計(jì)算卸載引起的網(wǎng)絡(luò)擁塞問(wèn)題,建立卸載用戶接入請(qǐng)求隊(duì)列的上溢概率估計(jì)模型,提出一種基于在線測(cè)量的霧節(jié)點(diǎn)時(shí)頻資源配置算法。最后,借助分式規(guī)劃理論和拉格朗日對(duì)偶分解方法得到迭代的帶寬和功率分配策略。仿真結(jié)果表明,該文算法可以在滿足時(shí)延需求的前提下,最小化系統(tǒng)能耗和資源成本。

  • 圖  1  云霧混合車聯(lián)網(wǎng)網(wǎng)絡(luò)架構(gòu)

    圖  2  節(jié)省能量與時(shí)延閾值的關(guān)系

    圖  3  平均資源成本與霧節(jié)點(diǎn)數(shù)量的關(guān)系

    圖  4  總能量消耗與霧節(jié)點(diǎn)用戶數(shù)的關(guān)系

    圖  5  平均時(shí)延與霧節(jié)點(diǎn)數(shù)量的關(guān)系

    圖  6  違反概率與卸載用戶數(shù)的關(guān)系

    表  1  聯(lián)合卸載決策和基于二分法的計(jì)算資源調(diào)度算法

     1. 初始化試驗(yàn)次數(shù)$J$,用戶數(shù)$M$,總帶寬$B_f^{\max }$及資源塊帶寬${B_{SC}}$
       及總計(jì)算資源${F^{{\rm{fog}}}}$,初始化用戶參數(shù)${D_m}$, ${u_m}$, $f_m^{{\rm{loc}}}$, $p_m^{\max }$,
    $p_m^{{\rm{id}}}$, $p_m^{{\rm{loc}}}$, $R_m^{{\rm{fc}}}$, $f_m^c$, $d_m^{\max }$,初始化式(17)中的所有矩陣
     2. 利用凸優(yōu)化工具求解式(17)得到優(yōu)化解${{{Q}}^*}$
     3. 從優(yōu)化解${{{Q}}^{\rm{*}}}$中提取左上角$2M \times 2M$的子矩陣${{{Q}}^{'*}}$, ${{{Q}}^{'*}}$中的
      對(duì)角線上的元素值為$\Pr = \left[ { {\rm{pr} }_1^f,{\rm{pr} }_1^{\rm c},...,{\rm{pr} }_M^f,{\rm{pr} }_M^{\rm c}} \right]$
     4. for $j = 1;j \le J;j + + $ do
     5.  根據(jù)式(18)從$\Pr $中提取卸載決策${{{v}}^j}$
     6.  執(zhí)行計(jì)算資源調(diào)度:初始化參數(shù)${\chi ^{\min }} = \max \{ {S_m}\} ,\,{\chi ^{\max } } = $
       $ \displaystyle\sum\limits_m {\left( {\frac{ { {C_m}p_m^{ {\rm{id} } }M} }{ { {F^{ {\rm{fog} } } } } } + {S_m} } \right)}$,于是有${\chi ^{\min }} \le {\chi ^{{\rm{opt}}}} \le {\chi ^{\max }}$,最大
       可容忍誤差$\varepsilon > 0$, ${\chi ^j}{\rm{ = (}}{\chi ^{\min }} + {\chi ^{\max }}{\rm{)/2}}$
     7. while $|{\chi ^{\max }} - {\chi ^{\min }}| \ge \varepsilon $ do
     8.   if $\displaystyle\sum\limits_{m \in M} {\frac{ { {C_m}p_m^{ {\rm{id} } } }}{ { {\chi ^j} - {S_m} } } > {F^{ {\rm{fog} } } }}$ then
     9.    ${\chi ^{\min }} = {\chi ^j}$
     10.   else
     11.    ${\chi ^{\max }} = {\chi ^j}$
     12.   end if
     13. end while
     14.  if $|{\chi ^{\max }} - {\chi ^{\min }}| \le \varepsilon $ then
     15.   ${\chi ^{{\rm{opt}}}} = {\chi ^j}$
     16. end if
     17. 將得到的${\chi ^{{\rm{opt}}}}$代入式(21)得到計(jì)算資源調(diào)度策略${{{f}}^{{\rm{fog}}}}$
     18. end for
    下載: 導(dǎo)出CSV

    表  2  基于在線測(cè)量的接入控制算法

     1. 初始化每個(gè)霧節(jié)點(diǎn)的資源塊配置數(shù)量$z$和剩余資源塊數(shù)量$B$,
    在周期$n$上觀察每個(gè)霧節(jié)點(diǎn)$f$ 的接入請(qǐng)求隊(duì)列狀態(tài)$Q_n^f$
     2. for $f = 1;f < F;f + + $ do
     3.  計(jì)算$a_{\rm o}^f$,估計(jì)${\mathop m\limits^{\wedge} } _{\rm o}^f$
     4. while $Q_n^f \ge B_H^f$ or $B = \emptyset $ do
     5.  $z \leftarrow z + 1$,${C_f}(n) \leftarrow z\mathop r\limits^\_ $,$B \leftarrow B - 1$
     6. end while
     7. 計(jì)算$a_{\rm o}^f$及$\hat m_{\rm o}^f$
     8. if $Q_n^f < B_H^f$ & $\hat m_{\rm o}^f \ge a_{\rm o}^f$ then
     9. $z \leftarrow z + {\Delta _1}$,${C_f}(n) \leftarrow z\mathop r\limits^\_ $,$B \leftarrow B - {\Delta _1}$
     10.  else if $Q_n^f < B_H^f$ & $\hat m_{\rm o}^f \ge a_{\rm o}^f$ then
     11.   式(24)執(zhí)行黃金分割搜索算法估計(jì)$\hat P_{n + N}^f$
     12.   if $\hat P_{n + N}^f \ge {\varepsilon _f}$ then
     13.   $z \leftarrow z + {\Delta _2}$, ${C_f}(n) \leftarrow z\mathop r\limits^\_ $, $B \leftarrow B - {\Delta _2}$
     14.   end if
     15.  end if
     16. end if
     17. end for
    下載: 導(dǎo)出CSV

    表  3  基于迭代的帶寬和功率資源調(diào)度

     1. 初始化迭代次數(shù)${N_1}{\rm{ = }}0$和${N_2}{\rm{ = }}0$,誤差精度${\delta _1}$和${\delta _2}$, ${V^{{N_1}}}{\rm{ = }}1$
     2. while ${N_1} < {N_{1\max }}$ do
     3.  while ${N_2} < {N_{2\max }}$ do
     4.   對(duì)給定的${V^{{N_1}}}$,根據(jù)式(31)求得優(yōu)化的傳輸功率解
     5.   在區(qū)間$[0,1]$內(nèi)執(zhí)行二分搜索方法求解${\varphi _m}({N_2})$,并將
        ${\varphi _m}({N_2})$代入式(34)求解帶寬資源調(diào)度方案
     6.    通過(guò)次梯度法分別更新拉格朗日乘子
     7.   if ${\rm{||}}\beta ({N_2} + 1) - \beta ({N_2})|{|_2} < {\delta _2}$,
        $||\eta ({N_2} + 1) - \eta ({N_2})|{|_2} < {\delta _2}$,
        $||\mu ({N_2} + 1) - \mu ({N_2})|{|_2} < {\delta _2}$,
        $||\pi ({N_2} + 1) - \pi ({N_2})|{|_2} < {\delta _2}$ then
     8.     $\alpha _m^{{N_1}} = {\alpha _m}({N_2})$, $p_m^{{\rm{com}}{{\rm{N}}_1}} = p_m^{{\rm{com}}}\left( {{N_2}} \right)$, break
     9.  else
     10.   ${N_2} = {N_2} + 1$
     11.  end if
     12.  end while
     13.  if $\left| { {D_m}p_m^{ {\rm{com} }{ {\rm{N} }_{\rm{1} } } } - {V^{ {N_1} } }\alpha _m^{ {N_1} }\lg \left( {1 + \dfrac{ {p_m^{ {\rm{com} }{ {\rm{N} }_{\rm{1} } } }{h_m} } }{ {\alpha _m^{ {N_1} }{N_0}{B_{ {\rm{SC} } } } } } } \right)} \right| < {\delta _1}$ then
     14.    $\{ {{{p}}^*},{{{\alpha}} ^*}\} = \{ {{{p}}^{{\rm{com}}{{\rm{N}}_{\rm{1}}}}},{{{\alpha}} ^{{N_1}}}\} $
     15.  else
     16.    令${V^{ {N_1} + 1} } \!\!=\! {D_m}p_m^{ {\rm{com} }{ {\rm{N} }_{\rm{1} } } }/\alpha _m^{ {N_1} }{B_{ {\rm{SC} } } }\lg \!\left( {1 \!+\! \dfrac{ {p_m^{ {\rm{com} }{ {\rm{N} }_{\rm{1} } } }{h_m} } }{ {\alpha _m^{ {N_1} }{N_0}{B_{ {\rm{SC} } } } } } } \right)$
     17.   end if
     18. end while
     19. 輸出無(wú)線資源調(diào)度優(yōu)化解${{{p}}^*}$, ${{{\alpha}} ^*}$
    下載: 導(dǎo)出CSV

    表  4  仿真參數(shù)

    參數(shù)數(shù)值
    系統(tǒng)帶寬10 MHz(50PRBs)
    路徑損耗模型UrbanMicro(UMi)
    最大傳輸功率23 dBm
    計(jì)算資源單價(jià)0.10, 0.15, 0.20 unit/cycle
    計(jì)算密度297.62 cycle/bit
    鏈路傳輸速率1 Mb/s
    參數(shù)數(shù)值
    卸載業(yè)務(wù)到達(dá)泊松分布
    萊斯因子6 dB
    滑動(dòng)窗口大小60 ms
    平滑指數(shù)0.7
    霧計(jì)算資源量1 G cycle
    云層計(jì)算能力2 G cycle/s
    參數(shù)數(shù)值
    比特到達(dá)速率0.4 Mbit/ms
    噪聲功率–174 dBm/Hz
    PRB單價(jià)1, 1.5, 2 unit/PRB
    仿真時(shí)間6000 ms
    隊(duì)列上溢概率0.2
    單位$t$功率消耗0.01 W
    下載: 導(dǎo)出CSV
  • MEBREK A, MERGHEM-BOULAHIA L, and ESSEGHIR M. Efficient green solution for a balanced energy consumption and delay in the IoT-Fog-Cloud computing[C]. The 16th IEEE International Symposium on Network Computing and Applications, Cambridge, USA, 2017: 1–4. doi: 10.1109/NCA.2017.8171359.
    BACCARELLI E, NARANJO P G V, SCARPINITI M, et al. Fog of everything: Energy-efficient networked computing architectures, research challenges, and a case study[J]. IEEE Access, 2017, 5: 9882–9910. doi: 10.1109/ACCESS.2017.2702013
    LIU Kaiyang, PENG Jun, ZHANG Xiaoyong, et al. A combinatorial optimization for energy-efficient mobile cloud offloading over cellular networks[C]. 2016 IEEE Global Communications Conference, Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7841488.
    YANG Lei, CAO Jiannong, TANG Shaojie, et al. A framework for partitioning and execution of data stream applications in mobile cloud computing[C]. The 5th IEEE International Conference on Cloud Computing, Honolulu, USA, 2012: 794–802. doi: 10.1109/CLOUD.2012.97.
    LIU Mengyu and LIU Yuan. Price-based distributed offloading for mobile-edge computing with computation capacity constraints[J]. IEEE Wireless Communications Letters, 2018, 7(3): 420–423. doi: 10.1109/LWC.2017.2780128
    CAO Xiaowen, WANG Feng, XU Jie, et al. Joint computation and communication cooperation for energy-efficient mobile edge computing[J]. IEEE Internet of Things Journal, 2019, 6(3): 4188–4200. doi: 10.1109/JIOT.2018.2875246
    MENG Xianling, WANG Wei, and ZHANG Zhaoyang. Delay-constrained hybrid computation offloading with cloud and fog computing[J]. IEEE Access, 2017, 5: 21355–21367. doi: 10.1109/ACCESS.2017.2748140
    GU H Y, YANG C Y, and FONG B. Low-complexity centralized joint power and admission control in cognitive radio networks[J]. IEEE Communications Letters, 2009, 13(6): 420–422. doi: 10.1109/LCOMM.2009.082173
    JIANG Menglan, CONDOLUCI M, and MAHMOODI T. Network slicing management & prioritization in 5G mobile systems[C]. The 22th European Wireless Conference, Oulu, Finland, 2016: 1–6.
    YAQOOB S, ULLAH A, AKBAR M, et al. Fog-assisted congestion avoidance scheme for internet of vehicles[C]. The 14th International Wireless Communications & Mobile Computing Conference, Limassol, Cyprus, 2018: 618–622. doi: 10.1109/IWCMC.2018.8450402.
    LI Jian, PENG Mugen, YU Yuling, et al. Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9873–9887. doi: 10.1109/TVT.2016.2531184
    LIU Yiming, YU F R, LI Xi, et al. Distributed resource allocation and computation offloading in fog and cloud networks with non-orthogonal multiple access[J]. IEEE Transactions on Vehicular Technology, 2018, 67(12): 12137–12151. doi: 10.1109/TVT.2018.2872912
    LI Qiuping, ZHAO Junhui, GONG Yi, et al. Energy-efficient computation offloading and resource allocation in fog computing for internet of everything[J]. China Communications, 2019, 16(3): 32–41.
    SHAHZADI R, NIAZ A, ALI M, et al. Three tier fog networks: Enabling IoT/5G for latency sensitive applications[J]. China Communications, 2019, 16(3): 1–11.
    SOOKHAK M, YU F R, HE Ying, et al. Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing[J]. IEEE Vehicular Technology Magazine, 2017, 12(3): 55–64. doi: 10.1109/MVT.2017.2667499
    LI Di, KAR S, and CUI Shuguang. Distributed quickest detection in sensor networks via two-layer large deviation analysis[J]. IEEE Internet of Things Journal, 2018, 5(2): 930–942. doi: 10.1109/JIOT.2018.2810825
  • 加載中
圖(6) / 表(4)
計(jì)量
  • 文章訪問(wèn)數(shù):  2161
  • HTML全文瀏覽量:  781
  • PDF下載量:  141
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-12-13
  • 網(wǎng)絡(luò)出版日期:  2020-07-01
  • 刊出日期:  2020-08-18

目錄

    /

    返回文章
    返回