一種平衡準(zhǔn)確性以及高效性的顯著性目標(biāo)檢測(cè)深度卷積網(wǎng)絡(luò)模型
doi: 10.11999/JEIT190229 cstr: 32379.14.JEIT190229
-
燕山大學(xué)電氣工程學(xué)院 秦皇島 066004
A Deep Convolutional Network for Saliency Object Detection with Balanced Accuracy and High Efficiency
-
School of Electrical Engineering, Yan Shan University, Qinhuangdao 066004, China
-
摘要:
當(dāng)前的顯著性目標(biāo)檢測(cè)算法在準(zhǔn)確性和高效性兩方面不能實(shí)現(xiàn)良好的平衡,針對(duì)這一問題,該文提出了一種新的平衡準(zhǔn)確性以及高效性的顯著性目標(biāo)檢測(cè)深度卷積網(wǎng)絡(luò)模型。首先,通過將傳統(tǒng)的卷積替換為可分解卷積,大幅減少計(jì)算量,提高檢測(cè)效率。其次,為了更好地利用不同尺度的特征,采用了稀疏跨層連接結(jié)構(gòu)及多尺度融合結(jié)構(gòu)來提高模型檢測(cè)精度。廣泛的評(píng)價(jià)表明,與現(xiàn)有方法相比,所提的算法在效率和精度上都取得了領(lǐng)先的性能。
-
關(guān)鍵詞:
- 顯著性檢測(cè) /
- 深度學(xué)習(xí) /
- 分解卷積 /
- 稀疏跨層連接 /
- 多尺度融合
Abstract:It is difficult for current salient object detection algorithms to reach a good balance performance between accuracy and efficiency. To solve this problem, a deep convolutional network for saliency object detection with balanced accuracy and high efficiency is produced. First, through replacing the traditional convolution with the decomposed convolution, the computational complexity is greatly reduced and the detection efficiency of the model is improved. Second, in order to make better use of the characteristics of different scales, sparse cross-layer connection structure and multi-scale fusion structure are adopted to improve the detection precision. A wide range of evaluations show that compared with the existing methods, the proposed algorithm achieves the leading performance in efficiency and accuracy.
-
表 1 不同卷積結(jié)構(gòu)對(duì)比
結(jié)構(gòu) 參數(shù)量(106) 準(zhǔn)確率(%) 使用時(shí)間(s) 2維卷積 5.16 89.3 0.026 分解卷積 3.75 89.7 0.017 下載: 導(dǎo)出CSV
表 2 不同卷積結(jié)構(gòu)對(duì)比
結(jié)構(gòu) 準(zhǔn)確率(%) 使用時(shí)間(s) 無跨層連接 89.7 0.017 跨層連接 91.7 0.023 下載: 導(dǎo)出CSV
表 3 整體網(wǎng)絡(luò)結(jié)構(gòu)詳表
結(jié)構(gòu) 名稱 類型 輸出尺寸 輸出編號(hào) 結(jié)構(gòu) 名稱 類型 輸出尺寸 輸出編號(hào) convblock1 reconv$ \times $2 448$ \times $448$ \times $16 1 cross-layer conv3 rate=12 224$ \times $224$ \times $256 $5" $ cross-layer conv3 rate=16 448$ \times $448$ \times $32 $1' $ convblock4 maxpool 下采樣 cross-layer conv3 rate=24 448$ \times $448$ \times $256 $1'' $ reconv$ \times $3 56$ \times $56$ \times $128 6 convblock2 maxpool 下采樣 concat3 融合 56$ \times $56$ \times $256 $(5'+6) $ reconv$ \times $2 224$ \times $224$ \times $32 2 conv1 降維 56$ \times $56$ \times $128 7 concat1 融合 224$ \times $224$ \times $64 $(1'+2) $ cross-layer conv3 rate=6 56$ \times $56$ \times $256 $7'' $ conv1 降維 224$ \times $224$ \times $32 3 convblock5 maxpool 下采樣 cross-layer conv3 rate=8 224$ \times $224$ \times $64 $3′ $ reconv$ \times $3 28$ \times $28$ \times $256 8 cross-layer conv3 rate=18 224$ \times $224$ \times $256 $3" $ concat4 融合 28$ \times $28$ \times $1280 $(1''+3''+5''+7''+8) $ convblock3 maxpool 下采樣 conv1 降維 28$ \times $28$ \times $256 9 reconv$ \times $3 112$ \times $112$ \times $64 4 upblock1 deconv 上采樣 concat2 融合 112$ \times $112$ \times $128 $(3'+4) $ reconv$ \times $3 112$ \times $112$ \times $64 conv1 降維 112$ \times $112$ \times $64 5 upblock2 deconv 上采樣 448$ \times $448$ \times $2 final ross-layer conv3 rate=4 224$ \times $224$ \times $128 $5' $ 下載: 導(dǎo)出CSV
表 4 F-measure(F-m)和MAE得分表
算法 MSRA ECSSD PASCAL-S SOD HKU-IS F-m MAE F-m MAE F-m MAE F-m MAE F-m MAE 本文方法 0.914 0.045 0.893 0.060 0.814 0.113 0.832 0.119 0.893 0.036 DCL 0.905 0.052 0.890 0.088 0.805 0.125 0.820 0.139 0.885 0.072 ELD 0.904 0.062 0.867 0.080 0.771 0.121 0.760 0.154 0.839 0.074 NLDF 0.911 0.048 0.905 0.063 0.831 0.099 0.810 0.143 0.902 0.048 MST 0.839 0.128 0.653 0.171 0.584 0.236 – – – – DSR 0.812 0.119 0.737 0.173 0.646 0.204 0.655 0.234 0.735 0.140 下載: 導(dǎo)出CSV
表 5 不同算法處理時(shí)間對(duì)比(s)
模型 本文方法 DCL ELD NLDF MST DSR 時(shí)間 0.023 1.200 0.300 0.080 0.025 13.580 環(huán)境 GTX1080 GTX1080 GTX1080 Titan X i7 CPU i7 CPU 尺寸 448$ \times $448 300$ \times $400 400$ \times $300 300$ \times $400 300$ \times $400 400$ \times $300 下載: 導(dǎo)出CSV
-
WANG Lijun, LU Huchuan, RUAN Xiang, et al. Deep networks for saliency detection via local estimation and global search[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3183–3192. doi: 10.1109/CVPR.2015.7298938. LI Guanbin and YU Yizhou. Visual saliency based on multiscale deep features[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 5455–5463. doi: 10.1109/CVPR.2015.7299184. LEE G, TAI Y W, and KIM J. Deep saliency with encoded low level distance map and high level features[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 660–668. doi: 10.1109/CVPR.2016.78. LIU Nian and HAN Junwei. DHSNet: Deep hierarchical saliency network for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 678–686. doi: 10.1109/CVPR.2016.80. WANG Linzhao, WANG Lijun, LU Huchuan, et al. Saliency detection with recurrent fully convolutional networks[C]. The 14th European Conference on Computer Vision, Amsterdam, Netherlands, 2016: 825–841. doi: 10.1007/978-3-319-46493-0_50. ZHANG Xinsheng, GAO Teng, and GAO Dongdong. A new deep spatial transformer convolutional neural network for image saliency detection[J]. Design Automation for Embedded Systems, 2018, 22(3): 243–256. doi: 10.1007/s10617-018-9209-0 ZHANG Jing, ZHANG Tong, DAI Yuchao, et al. Deep unsupervised saliency detection: A multiple noisy labeling perspective[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 9029–9038. doi: 10.1109/CVPR.2018.00941. CAO Feilong, LIU Yuehua, and WANG Dianhui. Efficient saliency detection using convolutional neural networks with feature selection[J]. Information Sciences, 2018, 456: 34–49. doi: 10.1016/j.ins.2018.05.006 ZHU Dandan, DAI Lei, LUO Ye, et al. Multi-scale adversarial feature learning for saliency detection[J]. Symmetry, 2018, 10(10): 457–471. doi: 10.3390/sym10100457 ZENG Yu, ZHUGE Yunzhi, LU Huchuan, et al. Multi-source weak supervision for saliency detection[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6067–6076. SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. 2014, arXiv: 1409.1556. ALVAREZ J and PETERSSON L. DecomposeMe: Simplifying convNets for end-to-end learning[J]. 2016, arXiv: 1606.05426v1. LIU Tie, YUAN Zejian, SUN Jian, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 353–367. doi: 10.1109/TPAMI.2010.70 YAN Qiong, XU Li, SHI Jianping, et al. Hierarchical saliency detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 1155–1162. doi: 10.1109/CVPR.2013.153. LI Yin, HOU Xiaodi, KOCH C, et al. The secrets of salient object segmentation[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 280–287. doi: 10.1109/CVPR.2014.43. MOVAHEDI V and ELDER J H. Design and perceptual validation of performance measures for salient object segmentation[C]. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 49–56. doi: 10.1109/CVPRW.2010.5543739. LI Guanbin and YU Yizhou. Deep contrast learning for salient object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 478–487. doi: 10.1109/CVPR.2016.58. LUO Zhiming, MISHRA A, ACHKAR A, et al. Non-local deep features for salient object detection[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6593–6601. doi: 10.1109/CVPR.2017.698. TU W C, HE Shengfeng, YANG Qingxiong, et al. Real-time salient object detection with a minimum spanning tree[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2334–2342. doi: 10.1109/CVPR.2016.256. LI Xiaohui, LU Huchuan, ZHANG Lihe, et al. Saliency detection via dense and sparse reconstruction[C]. 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 2976–2983. doi: 10.1109/ICCV.2013.370. -