秩和非參數(shù)檢測(cè)器在雜波邊緣中的性能
doi: 10.11999/JEIT190136 cstr: 32379.14.JEIT190136
-
煙臺(tái)南山學(xué)院電氣與電子工程系 煙臺(tái) 265713
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61179016)
Performance of Rank Sum Nonparametric Detector at Clutter Edge
-
Department of Electrical and Electronic Engineering, Yantai Nanshan University, Yantai 265713, China
Funds: The National Natural Science Foundation of China (61179016)
-
摘要: 人們常用Rohling教授提出的3種典型背景即均勻背景、多目標(biāo)和雜波邊緣來(lái)對(duì)檢測(cè)器的恒虛警率(CFAR)性能進(jìn)行衡量,但在現(xiàn)有的文獻(xiàn)中缺乏秩和(RS)非參數(shù)檢測(cè)器在雜波邊緣中虛警概率的解析表達(dá)式,缺乏RS檢測(cè)器與經(jīng)典的參量型恒虛警率(CFAR)檢測(cè)器在雜波邊緣中虛警控制能力的比較,這在理論研究上是不完整、不全面的。該文給出了RS檢測(cè)器在雜波邊緣中虛警概率的解析表達(dá)式,并比較了它與非相干積累單元平均(CA),選大(GO)和有序統(tǒng)計(jì)(OS)恒虛警方法在雜波邊緣中的虛警控制能力??梢钥闯?,在強(qiáng)、弱雜波均為瑞利分布的情況下,RS檢測(cè)器在雜波邊緣的虛警控制能力處于非相干積累CA方法和非相干積累OS方法之間。但是當(dāng)長(zhǎng)拖尾分布的非高斯雜波進(jìn)入?yún)⒖蓟皶r(shí),非相干積累CA, GO和OS參量型檢測(cè)方法的虛警概率都產(chǎn)生了3個(gè)以上數(shù)量級(jí)的上升,且不能回到原始設(shè)定的虛警概率。而RS檢測(cè)器顯示出了非參量檢測(cè)器的優(yōu)勢(shì),即當(dāng)雜波背景的分布類型發(fā)生變化后,它仍然可以保持虛警概率的恒定。
-
關(guān)鍵詞:
- 雷達(dá) /
- 目標(biāo)檢測(cè) /
- 非參數(shù) /
- 韋布爾分布 /
- 恒虛警率
Abstract: The performance of a Constant False Alarm Rate (CFAR) detector is often evaluated in three typical backgrounds - homogeneous environment, multiple targets situation and clutter edges described by Prof. Rohling. However, there is a lack of the analytic expression of the false alarm rate for the Rank Sum (RS) nonparametric detector at clutter boundaries, and lack of a comparison of the ability for the RS detector to control the rise of the false alarm rate at clutter edges to that of the conventional parametric CFAR schemes; which is incomplete and imperfect for the detection theory of nonparametric detectors. The analytic expression of the false alarm rate Pfa for the RS nonparametric detector at clutter edges is given in this paper, and the ability of the RS nonparametric detector to control the rise of the false alarm rate at clutter edges is compared to that of the Cell Averaing (CA) CFAR, the Greatest Of (GO) CFAR and the Ordered Statistic (OS) CFAR with incoherent integration. When both of the heavy and the weak clutters follow a Rayleigh distribution, it is shown that the rise of the false alarm rate for the RS detector at clutter edges lies between that of the CA-CFAR and that of the OS-CFAR with incoherent integration. If a non-Gaussian distributed clutter with a long tail moves into the reference window, the rise of the CA-CFAR, the GO-CFAR and the OS-CFAR with incoherent integration reaches a peak of more than 3 orders of magnitude, and can not return to the original pre-designed Pfa. However, the RS nonparametric detector exhibits its inherent advantage in such situation, it can maintain a constant false alarm rate even the distribution form of clutter becomes a different one.-
Key words:
- Radar /
- Target detection /
- Nonparametric /
- Weibull distribution /
- Constant False Alarm Rate (CFAR)
-
WEINBERG G V and TRAN C. A Weber-Haykin detector in correlated Pareto distributed clutter[J]. Digital Signal Processing, 2019, 84: 107–113. doi: 10.1016/j.dsp.2018.10.007 WEINBERG G V, BATEMAN L, and HAYDEN P. Development of non-coherent CFAR detection processes in Weibull background[J]. Digital Signal Processing, 2018, 75: 96–106. doi: 10.1016/j.dsp.2018.01.002 ZHOU Wei, XIE Junhao, LI Gaopeng, et al. Robust CFAR detector with weighted amplitude iteration in nonhomogeneous sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1520–1535. doi: 10.1109/TAES.2017.2671798 MENG X W. Performance analysis of OS-CFAR with binary integration for Weibull background[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1357–1366. doi: 10.1109/TAES.2013.6494420 BAADECHE M and SOLTANI F. Performance analysis of mean level constant false alarm rate detectors with binary integration in Weibull background[J]. IET Radar, Sonar & Navigation, 2015, 9(3): 233–240. doi: 10.1049/iet-rsn.2014.0053 WEINBERG G V and KYPRIANOU R. Optimised binary integration with order statistic CFAR in Pareto distributed clutter[J]. Digital Signal Processing, 2015, 42: 50–60. doi: 10.1016/j.dsp.2015.04.002 WICKS M C and BALDYGO W J. Expert system CFAR: Algorithm development, experimental demonstration, and transition to airborne radar systems[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(9): 40–47. doi: 10.1109/MAES.2017.160243 ROHLING H. Radar CFAR thresholding in clutter and multiple target situations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(4): 608–621. doi: 10.1109/TAES.1983.309350 GANDHI P P and KASSAM S A. Analysis of CFAR processors in nonhomogeneous background[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 427–445. doi: 10.1109/7.7185 孟祥偉. 非參數(shù)秩和檢測(cè)器的性能分析[J]. 電子與信息學(xué)報(bào), 2013, 35(8): 2029–2032.MENG Xiangwei. Performance analysis of rank sum nonparametric detector[J]. Journal of Electronics &Information Technology, 2013, 35(8): 2029–2032. -