一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

車輛網(wǎng)絡多平臺卸載智能資源分配算法

王汝言 梁穎杰 崔亞平

王汝言, 梁穎杰, 崔亞平. 車輛網(wǎng)絡多平臺卸載智能資源分配算法[J]. 電子與信息學報, 2020, 42(1): 263-270. doi: 10.11999/JEIT190074
引用本文: 王汝言, 梁穎杰, 崔亞平. 車輛網(wǎng)絡多平臺卸載智能資源分配算法[J]. 電子與信息學報, 2020, 42(1): 263-270. doi: 10.11999/JEIT190074
Ruyan WANG, Yingjie LIANG, Yaping CUI. Intelligent Resource Allocation Algorithm for Multi-platform Offloading in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(1): 263-270. doi: 10.11999/JEIT190074
Citation: Ruyan WANG, Yingjie LIANG, Yaping CUI. Intelligent Resource Allocation Algorithm for Multi-platform Offloading in Vehicular Networks[J]. Journal of Electronics & Information Technology, 2020, 42(1): 263-270. doi: 10.11999/JEIT190074

車輛網(wǎng)絡多平臺卸載智能資源分配算法

doi: 10.11999/JEIT190074 cstr: 32379.14.JEIT190074
基金項目: 國家自然科學基金(61801065, 61771082, 61871062),重慶市高校創(chuàng)新團隊建設計劃(CXTDX201601020)
詳細信息
    作者簡介:

    王汝言:男,1969年生,教授,主要研究方向為泛在網(wǎng)絡、多媒體信息處理等

    梁穎杰:女,1994年生,碩士生,研究方向為車聯(lián)網(wǎng)、移動邊緣計算

    崔亞平:男,1986年生,講師,研究方向為毫米波通信、多天線技術、車聯(lián)網(wǎng)等

    通訊作者:

    梁穎杰 liangyj10111@163.com

  • 中圖分類號: TN919.2

Intelligent Resource Allocation Algorithm for Multi-platform Offloading in Vehicular Networks

Funds: The National Natural Science Foundation of China (61801065, 61771082, 61871062), The Program for Innovation Team Building at Institutions of Higher Education in Chongqing (CXTDX201601020)
  • 摘要:

    為了降低計算任務的時延和系統(tǒng)的成本,移動邊緣計算(MEC)被用于車輛網(wǎng)絡,以進一步改善車輛服務。該文在考慮計算資源的情況下對車輛網(wǎng)絡時延問題進行研究,提出一種多平臺卸載智能資源分配算法,對計算資源進行分配,以提高下一代車輛網(wǎng)絡的性能。該算法首先使用K臨近(KNN)算法對計算任務的卸載平臺(云計算、移動邊緣計算、本地計算)進行選擇,然后在考慮非本地計算資源分配和系統(tǒng)復雜性的情況下,使用強化學習方法,以有效解決使用移動邊緣計算的車輛網(wǎng)絡中的資源分配問題。仿真結(jié)果表明,與任務全部卸載到本地或MEC服務器等基準算法相比,提出的多平臺卸載智能資源分配算法實現(xiàn)了時延成本的顯著降低,平均可節(jié)省系統(tǒng)總成本達80%。

  • 圖  1  網(wǎng)絡模型

    圖  2  總成本與距離關系圖

    圖  3  總成本與車輛數(shù)關系圖

    圖  4  總成本與車輛數(shù)及本地計算能力關系圖

    圖  5  總成本與任務數(shù)據(jù)大小關系圖

     算法1 多平臺卸載智能資源分配算法
     階段1:初始化
        (1) 任務${R_i}$的最大延遲${\tau _{{R_i}}}$,任務大小${B_{{R_i}}}$;
        (2) 任務的當前位置$P = 1$;
        (3) ${{Q}}$矩陣,參數(shù)$\gamma $,獎賞矩陣${{R}}$;
        (4) 本地(l)、移動邊緣計算(m)、云計算(c),各平臺平 均延遲${\tau _1},{\tau _2},{\tau _3}$,允許最大任務大小${B_1},{B_2},{B_3}$。
     階段2:選擇任務卸載位置
       計算(${\tau _{{R_i}}},{B_{{R_i}}}$)和(${\tau _1},{B_1}$)的歐式距離$D$
       $D = \sqrt {{{({\tau _{{R_i}}} - {\tau _1})}^2} + {{({B_{{R_i}}} - {B_1})}^2}} ,P = 1$
       for j=2, 3 do
        計算(${\tau _{{R_i}}},{B_{{R_i}}}$)和(${\tau _j},{B_j}$)的歐式距離${d_j}$
        if ${d_j} < D$ then
         $D = {d_j},P = j$
        end if
       end for
       if P=1
        任務卸載到本地
        if P=2 or 3
        進行階段3。
     階段3:資源分配
      if P=3 then
       在云計算服務器中計算任務${R_i}$
     end if
     if P=2 then
       for 每次迭代 do
        隨機選擇一個狀態(tài)${s_t}$
      for 每一步 do
        從狀態(tài)${s_t}$的可能動作中隨機選擇動作$a$
        執(zhí)行動作$a$,計算獎勵$r$,進入下一狀態(tài)$s'$
        計算
        $q(s,a) \leftarrow r(s,a) + \gamma \cdot \max [q(s',a')]$
        更新狀態(tài)$s \leftarrow s'$
        until ${{Q}}$矩陣穩(wěn)定
       end for
      end for
     end if
    下載: 導出CSV
  • WU Dapeng, ZHANG Feng, WANG Honggang, et al. Security-oriented opportunistic data forwarding in mobile social networks[J]. Future Generation Computer Systems, 2018, 87: 803–815. doi: 10.1016/j.future.2017.07.028
    LUO Changqing, JI Jinlong, WANG Qianlong, et al. Channel state information prediction for 5G wireless communications: A deep learning approach[J]. IEEE Transactions on Network Science and Engineering, 2018. doi: 10.1109/TNSE.2018.2848960
    HUSSAIN R, SON J, EUN H, et al. Rethinking vehicular communications: Merging VANET with cloud computing[C]. The 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, Taipei, China, 2013: 606–609. doi: 10.1109/CloudCom.2012.6427481.
    LI Chunhai, WANG Siming, HUANG Xumin, et al. Parked vehicular computing for energy-efficient Internet of vehicles: A contract theoretic approach[J]. IEEE Internet of Things Journal, 2019, 6(4): 6079–6088. doi: 10.1109/JIOT.2018.2869892
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Optimal delay constrained offloading for vehicular edge computing networks[C]. 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6. doi: 10.1109/ICC.2017.7997360.
    ASHRAF M I, LIU Chenfeng, BENNIS M, et al. Dynamic resource allocation for optimized latency and reliability in vehicular networks[J]. IEEE Access, 2018, 6: 63843–63858. doi: 10.1109/ACCESS.2018.2876548
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Contract-theoretic approach for delay constrained offloading in vehicular edge computing networks[J]. Mobile Networks and Applications, 2019, 24(3): 1003–1014. doi: 10.1007/s11036-018-1032-0
    DING Qing, SUN Bo, and ZHNAG Xinming. A traffic-light-aware routing protocol based on street connectivity for urban vehicular Ad Hoc networks[J]. IEEE Communications Letters, 2016, 20(8): 1635–1638. doi: 10.1109/LCOMM.2016.2574708
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Mobile-edge computing for vehicular networks: A promising network paradigm with predictive off-loading[J]. IEEE Vehicular Technology Magazine, 2017, 12(2): 36–44. doi: 10.1109/MVT.2017.2668838
    HAN Guangjie, LIU Li, CHAN S, et al. HySense: A hybrid mobile Crowdsensing framework for sensing opportunities compensation under dynamic coverage constraint[J]. IEEE Communications Magazine, 2017, 55(3): 93–99. doi: 10.1109/MCOM.2017.1600658CM
    SOOKHAK M, YU F R, HE Ying, et al. Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing[J]. IEEE Vehicular Technology Magazine, 2017, 12(3): 55–64. doi: 10.1109/MVT.2017.2667499
    LI Ji, GAO Hui, Lü Tiejun, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377343.
    HE Ying, ZHAO Nan, and YIN Hongxi. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44–55. doi: 10.1109/TVT.2017.2760281
    LIN Chuncheng, DENG D J, and YAO C C. Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units[J]. IEEE Internet of Things Journal, 2018, 5(5): 3692–3700. doi: 10.1109/JIOT.2017.2690961
    MAO Yuyi, YOU Changsheng, ZHNAG Jun, et al. A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    ZHAO Pengtao, TIAN Hui, QIN Cheng, et al. Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing[J]. IEEE Access, 2017, 5: 11255–11268. doi: 10.1109/ACCESS.2017.2710056
    ZHANG Ke, MAO Yuming, LENG Supeng, et al. Energy-efficient offloading for mobile edge computing in 5G heterogeneous networks[J]. IEEE Access, 2016, 4: 5896–5907. doi: 10.1109/ACCESS.2016.2597169
  • 加載中
圖(5) / 表(1)
計量
  • 文章訪問數(shù):  3064
  • HTML全文瀏覽量:  1673
  • PDF下載量:  151
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2019-01-25
  • 修回日期:  2019-07-16
  • 網(wǎng)絡出版日期:  2019-09-20
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回