基于改進(jìn)的自適應(yīng)差分演化算法的二維Otsu多閾值圖像分割
doi: 10.11999/JEIT180949 cstr: 32379.14.JEIT180949
-
重慶大學(xué)光電技術(shù)及系統(tǒng)教育部重點(diǎn)實(shí)驗(yàn)室??重慶??400030
Multi-threshold Image Segmentation of 2D Otsu Based on Improved Adaptive Differential Evolution Algorithm
-
Key Laboratory of Optoelectronic Technology and System of Ministry of Education, Chongqing University, Chongqing 400030, China
-
摘要: 針對(duì)常規(guī)最大類間方差法在多閾值圖像分割中存在的運(yùn)算量大、計(jì)算時(shí)間長(zhǎng)、分割精度較低等問題,該文提出一種基于改進(jìn)的自適應(yīng)差分演化(JADE)算法的2維Otsu多閾值分割法。首先,為增強(qiáng)初始化種群的質(zhì)量、提升控制參數(shù)的適應(yīng)性,將混沌映射機(jī)制融入到JADE算法中;進(jìn)而,通過該改進(jìn)算法求解2維 Otsu 多閾值圖像的最佳分割閾值;最終,將該算法與差分進(jìn)化(DE), JADE,改進(jìn)正弦參數(shù)自適應(yīng)的差分進(jìn)化(LSHADE-cnEpSin)以及增強(qiáng)的適應(yīng)性微分變換差分進(jìn)化(EFADE) 4種算法的2維Otsu多閾值圖像分割進(jìn)行比較。實(shí)驗(yàn)結(jié)果表明,與其它4種算法相比,基于改進(jìn)JADE算法的2維Otsu多閾值圖像分割在分割速度以及精度上均有較明顯的改善。
-
關(guān)鍵詞:
- 圖像分割 /
- 最大類間方差法 /
- 混沌映射 /
- 改進(jìn)的自適應(yīng)差分演化算法
Abstract: The multi-threshold image segmentation of the classical 2D maximal between-cluster variance method has deficiencies such as large computation, long calculation time, low segmentation precision and so on. A multi-threshold segmentation of 2D Otsu based on improved Adaptive Differential Evolution (JADE) algorithm is proposed. Firstly, in order to enhance the quality of the initialized population and improve the adaptability of the control parameters, the chaotic mapping mechanism is integrated into the JADE algorithm. Furthermore, the optimal segmentation threshold of 2D Otsu multi-threshold image is solved by improved JADE algorithm. Finally, the algorithm is compared with multi-threshold image segmentation method of 2D Otsu based on Differential Evolution (DE), JADE, Improved Differential Evolution with Adaptive Sinusoidal Parameters (LSHADE-cnEpSin) and Enhanced Adaptive Differential Transformation Differential Evolution (EFADE) algorithm. The experimental results show that compared with the other four algorithms, the multi-threshold image segmentation of 2D Otsu based on the improved JADE algorithm has a significant improvement in terms of segmentation speed and accuracy. -
表 1 算法1:混沌映射更新參數(shù)uF和uCR的偽代碼
(1) If $\;\alpha < \beta $ (2) ${u_{\rm CR}} = {u_1} \cdot {u_{\rm CR}} \cdot (1 - {u_{\rm CR}})$ (3) ${u_F} = {u_2} \cdot {u_F} \cdot (1 - {u_F})$ (4) Else (5) ${u_{\rm CR}} = (1 - c) \cdot {u_{\rm CR}} + c \cdot {{\rm mean}_{\rm A}}({S_{\rm CR}})$ (6) ${u_F} = (1 - c) \cdot {u_F} + c \cdot {{\rm mean}_{\rm L}}({S_F})$ (7) End If 下載: 導(dǎo)出CSV
表 2 PSNR、運(yùn)算時(shí)間以及迭代次數(shù)的對(duì)比
算法 Lena (512$ \times $512) Finger (256$ \times $256) Pepper (512$ \times $512) 2閾值 3閾值 4閾值 2閾值 3閾值 4閾值 2閾值 3閾值 4閾值 DE算法 PSNR(dB) 10.58 13.88 15.64 12.02 12.45 14.14 11.68 15.84 16.54 收斂時(shí)間(s) 7.79 7.82 7.84 3.64 3.58 3.73 8.49 8.34 8.82 迭代次數(shù) 72 58 64 62 57 66 45 43 47 JADE算法 PSNR(dB) 11.79 14.25 16.02 12.35 13.02 14.26 11.71 16.32 16.71 收斂時(shí)間(s) 0.85 0.83 0.77 0.51 0.53 0.57 0.81 0.80 0.83 迭代次數(shù) 52 54 50 59 62 58 60 56 58 LSHADE-cnEpSin算法 PSNR(dB) 13.70 14.98 15.67 12.07 12.77 14.46 12.23 16.19 17.02 收斂時(shí)間(s) 0.79 0.75 0.82 0.45 0.48 0.46 0.78 0.82 0.78 迭代次數(shù) 34 35 33 65 45 60 50 48 46 EFADE算法 PSNR(dB) 12.89 15.05 15.45 13.23 12.61 13.24 12.11 15.57 16.67 收斂時(shí)間(s) 0.99 1.12 1.10 0.77 0.76 0.83 1.24 1.31 1.29 迭代次數(shù) 45 42 46 50 48 52 40 38 41 CJADE算法 PSNR(dB) 13.93 15.64 16.25 13.65 14.67 14.89 12.56 16.57 17.12 收斂時(shí)間(s) 0.64 0.66 0.65 0.45 0.44 0.48 0.61 0.64 0.66 迭代次數(shù) 38 35 38 41 40 44 40 36 38 下載: 導(dǎo)出CSV
表 3 閾值和距離測(cè)度值的對(duì)比
算法 Lena (512$ \times $512) Finger (256$ \times $256) Pepper (512$ \times $512) 2閾值 3閾值 4閾值 2閾值 3閾值 4閾值 2閾值 3閾值 4閾值 DE算法 距離測(cè)度 4645.67 4698.86 4747.74 1223.45 1247.75 1296.25 5340.87 5407.71 5513.28 閾值 (68,71)
(117,153)(30, 32)
(86,138)
(193,199)(88,95)
(119,123)
(151,153)
(202,207)(39,53)
(155,165)(108,124)
(147,152)
(168,180)(23,38)
(102,133)
(150,157)
(169,170)(70,70)
(117,161)(84, 85)
(142,162)
(201,203)(70,77)
(111,112)
(126,129)
(129,179)JADE算法 距離測(cè)度 4842.77 4912.21 4924.13 1315.43 1320.35 1326.23 5798.46 5822.86 5892.86 閾值 (89,149)
(193,195)(77,79)
(114,149)
(196,196)(70,77)
(109,137)
(149,154)
(182,183)(138,166)
(175,175)(10,67)
(143,164)
(174,175)(40,52)
(50,110)
(156,156)
(171,172)(88,91)
(127,169)(98, 115)
(140,140)
(178,178)(96,101)
(114,133)
(149,150)
(152,171)LSHADE-cnEpSin算法 距離測(cè)度 4862.49 4905.97 4995.04 1256.65 1268.79 1289.32 5797.85 5899.34 5909.58 閾值 (88,149)
(194,195)(79,79)
(115,145)
(177,177)(76,76)
(119,141)
(158,160)
(197,197)(88,102)
(183,183)(64,82)
(148,164)
(183,184)(36,39)
(42,98)
(145,155)
(164,169)(78,79)
(126,177)(84, 85)
(127,159)
(194,194)(76,77)
(121,122)
(126,157)
(192,193)EFADE算法 距離測(cè)度 4848.87 4951.82 4973.23 1257.29 1267.42 1324.41 5788.61 5885.72 5892.13 閾值 (89,148)
(186,186)(76,80)
(130,153)
(205,205)(79,86)
(112,137)
(139,151)
(201,203)(44,51)
(142,176)(30,42)
(140,162)
(172,174)(41,46)
(68,83)
(141,167)
(172,173)(86,90)
(120,176)(73, 74)
(121,159)
(193,194)(53,55)
(121,123)
(154,154)
(180,182)CJADE算法 距離測(cè)度 4863.53 4977.34 4999.63 1327.84 1329.17 1331.28 5799.13 5898.73 5912.18 閾值 (87,149)
(194,194)(77,78)
(115,148)
(194,195)(78,80)
(117,139)
(156,156)
(199,199)(143,166)
(173,173)(25, 62)
(142,166)
(174,175)(40,45)
(70,98)
(156,158)
(162,162)(84,85)
(124,173)(77, 78)
(123,164)
(195,195)(54,55)
(99,100)
(129,160)
(199,199)下載: 導(dǎo)出CSV
-
劉健莊, 栗文青. 灰度圖象的二維Otsu自動(dòng)閾值分割法[J]. 自動(dòng)化學(xué)報(bào), 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015LIU Jianzhuang and LI Wenqing. The automatic thresholding of gray-level pictures via two-dimensional otsu method[J]. Acta Automatica Sinica, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015 申鉉京, 劉翔, 陳海鵬. 基于多閾值Otsu準(zhǔn)則的閾值分割快速計(jì)算[J]. 電子與信息學(xué)報(bào), 2017, 39(1): 144–149. doi: 10.11999/JEIT160248SHEN Xuanjing, LIU Xiang, and CHEN Haipeng. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics &Information Technology, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248 HU Min, LI Mei, and WANG Ronggui. Application of an improved Otsu algorithm in image segmentation[J]. Journal of Electronic Measurement and Instrument, 2010, 24(5): 443–449. doi: 10.3724/SP.J.1187.2010.00443 ZHANG Jingqiao and SANDERSON A C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958. doi: 10.1109/TEVC.2009.2014613 TANABE R and FUKUNAGA A. Success-history based parameter adaptation for differential evolution[C]. 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013: 71–78. TANABE R and FUKUNAGA A S. Improving the search performance of SHADE using linear population size reduction[C]. 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 2014: 1658–1665. AWAD N H, ALI M Z, SUGANTHAN P N, et al. An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems[C]. 2016 IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2016: 2958–2965. AWAD N H, ALI M Z, and SUGANTHAN P N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[C]. 2017 IEEE Congress on Evolutionary Computation, San Sebastian, Spain, 2017: 372–379. MOHAMED A W and SUGANTHAN P N. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation[J]. Soft Computing, 2018, 22(10): 3215–3235. doi: 10.1007/s00500-017-2777-2 STHITPATTANAPONGSA P and SRINARK T. A two-stage Otsu’S thresholding based method on a 2D histogram[C]. IEEE 7th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 2011: 345–348. 張春美, 陳杰, 辛斌. 參數(shù)適應(yīng)性分布式差分進(jìn)化算法[J]. 控制與決策, 2014, 29(4): 701–706. doi: 10.13195/j.kzyjc.2013.0080ZHANG Chunmei, CHEN Jie, and XIN Bin. Distributed differential evolution algorithm with adaptive parameters[J]. Control and Decision, 2014, 29(4): 701–706. doi: 10.13195/j.kzyjc.2013.0080 王李進(jìn), 鐘一文, 尹義龍. 帶外部存檔的正交交叉布谷鳥搜索算法[J]. 計(jì)算機(jī)研究與發(fā)展, 2015, 52(11): 2496–2507. doi: 10.7544/issn1000-1239.2015.20148042WANG Lijin, ZHONG Yiwen, and YIN Yilong. Orthogonal crossover cuckoo search algorithm with external archive[J]. Journal of Computer Research and Development, 2015, 52(11): 2496–2507. doi: 10.7544/issn1000-1239.2015.20148042 RERE L M R, FANANY M I, and MURNI A. Adaptive DE based on chaotic sequences and random adjustment for image contrast enhancement[C]. 2014 International Conference of Advanced Informatics: Concept, Theory and Application, Bandung, Indonesia, 2015: 220–225. doi: 10.1109/ICAICTA.2014.7005944. 陳志剛, 梁滌青, 鄧小鴻, 等. Logistic混沌映射性能分析與改進(jìn)[J]. 電子與信息學(xué)報(bào), 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039 陳如清. 采用新型粒子群算法的電力電子裝置在線故障診斷方法[J]. 中國(guó)電機(jī)工程學(xué)報(bào), 2008, 28(24): 70–74. doi: 10.3321/j.issn:0258-8013.2008.24.012CHEN Ruqing. A novel PSO based on-line fault diagnosis approach for power electronic system[J]. Proceedings of the CSEE, 2008, 28(24): 70–74. doi: 10.3321/j.issn:0258-8013.2008.24.012 SHA Chunshi, HOU Jian, and CUI Hongxia. A robust 2D Otsu’s thresholding method in image segmentation[J]. Journal of Visual Communication and Image Representation, 2016, 41: 339–351. doi: 10.1016/j.jvcir.2016.10.013 HUYNH-THU Q and GHANBARI M. The accuracy of PSNR in predicting video quality for different video scenes and frame rates[J]. Telecommunication Systems, 2012, 49(1): 35–48. doi: 10.1007/s11235-010-9351-x -