探月衛(wèi)星同波束干涉測(cè)量技術(shù)應(yīng)用研究
doi: 10.11999/JEIT180914 cstr: 32379.14.JEIT180914
-
1.
北京航天飛行控制中心航天飛行動(dòng)力學(xué)技術(shù)重點(diǎn)實(shí)驗(yàn)室 北京 100094
-
2.
中國(guó)科學(xué)院國(guó)家天文臺(tái) ??北京 ??100012
Research on Application of Same-beam Interferometry in China Lunar Exploration
-
1.
National Key Laboratory of Science and Technology on Aerospace Flight Dynamics, Beijing Aerospace Control Center, Beijing 100094, China
-
2.
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
-
摘要: 探月工程嫦娥4號(hào)中繼星任務(wù)同時(shí)搭載月球軌道微衛(wèi)星,受地面測(cè)控資源分配限制,微衛(wèi)星的軌道測(cè)量由地基S/X頻段統(tǒng)一測(cè)控(TT&C)系統(tǒng)天線(USB)保障。該文通過(guò)分析地月轉(zhuǎn)移軌道段中繼星、微衛(wèi)星相對(duì)于跟蹤測(cè)站的幾何構(gòu)型,依托深空干涉測(cè)量系統(tǒng)設(shè)計(jì)實(shí)現(xiàn)對(duì)微衛(wèi)星、中繼星的同波束干涉測(cè)量(SBI)跟蹤;發(fā)揮中繼星測(cè)控資源豐富、軌道精度高的優(yōu)勢(shì),獲取了微衛(wèi)星優(yōu)于1 ns的測(cè)角觀測(cè)量;并應(yīng)用于微衛(wèi)星短弧定軌,統(tǒng)計(jì)分析表明定軌精度由2 km提升至優(yōu)于1 km、預(yù)報(bào)精度由6 km提升至2 km,為微衛(wèi)星軌道機(jī)動(dòng)后的快速高精度軌道確定與預(yù)報(bào)提供了有力支撐。
-
關(guān)鍵詞:
- 同波束干涉測(cè)量 /
- 短弧定軌 /
- 深空測(cè)控干涉測(cè)量系統(tǒng) /
- 嫦娥4號(hào)
Abstract: Because of restricted earth-based tracking network, Tracking, Telemetry and Command (TT&C) for lunar orbit micro-satellite is depended on Unified S/X Band (USB) antennas in China Chang’E-4 lunar exploration. Based on analysis of the geometry between relay satellite, micro-satellite and earth-based antennas during earth-moon transfer orbit, an applicable method to acquire delay observable through Same-Beam Interferometry (SBI) tracking by China deep space network is discussed. Benefited from more kinds of tracking resources and high accuracy orbit of relay satellite, delay observable for angular position measurement of micro-satellite in the order of 1 ns is obtained, which improves the micro-satellite orbit determination accuracy from 2 km to less than 1 km and improves orbit prediction accuracy from 6 km to 2 km. SBI tracking plays an important role in short arc orbit determination of micro-satellite. -
李海濤, 周歡, 郝萬(wàn)宏, 等. 深空導(dǎo)航無(wú)線電干涉測(cè)量技術(shù)的發(fā)展歷程和展望[J]. 飛行器測(cè)控學(xué)報(bào), 2013, 32(6): 470–478.LI Haitao, ZHOU Huan, HAO Wanhong, et al. Development of radio interferometry and its prospect in deep space navigation[J]. Journal of Spacecraft TT&C Technology, 2013, 32(6): 470–478. CURKENDALL D W and BORDER J S. Delta-DOR: The one-nanoradian navigation measurement system of the deep space network—history, architecture, and componentry[R]. IPN Progress Report 42-193, 2013. DUEV D A, CALVéS G M, POGREBENKO S V, et al. Spacecraft VLBI and doppler tracking: Algorithms and implementation[J]. Astronomy & Astrophysics, 2012, 541: A43. doi: 10.1051/0004-6361/201218885 CALVéS G M, NEIDHARDT A, PL?TZ C, et al. Venus and Mars Express spacecraft observations with wettzell radio telescopes[C]. IVS 2016 General Meeting, Johannesburg, South Africa, 2016: 382–385. BORDER J S. Innovations in delta differential one-way range: From viking to mars science laboratory[C]. 2009 International Symposium on Space Flight Dynamics, Toulouse, France, 2009: 1–16. ZHENG W M, HUANG Y, CHEN Z, et al. Real-time and high-accuracy VLBI in CE’3 mission[C]. The 2014 IVS General Meeting, Shanghai, China, 2014: 466–472. URL: http://ivscc.bkg.bund.de/publications/gm2014/100_Zheng_etal.pdf. 馬茂莉, 鄭為民, 黃逸丹, 等. 嫦娥三號(hào)探測(cè)器DOR信號(hào)本地相關(guān)處理與定軌驗(yàn)證[J]. 中國(guó)科學(xué): 物理學(xué) 力學(xué) 天文學(xué), 2017, 47(2): 029502. doi: 10.1360/SSPMA2016-00361MA Maoli, ZHENG Weimin, HUANG Yidan, et al. Local correlation and orbit determination for DOR signals in Chang’E-3[J]. Scientia Sinica Physica,Mechanica &Astronomica, 2017, 47(2): 029502. doi: 10.1360/SSPMA2016-00361 劉慶會(huì), 吳亞軍. 高精度VLBI技術(shù)在深空探測(cè)中的應(yīng)用[J]. 深空探測(cè)學(xué)報(bào), 2015, 2(3): 208–212.LIU Qinghui and WU Yajun. Application of high precision VLBI technology in deep space exploration[J]. Journal of Deep Space Exploration, 2015, 2(3): 208–212. 郭麗, 李金嶺, 童鋒賢, 等. 同波束VLBI技術(shù)對(duì)嫦娥三號(hào)巡視器的高精度相對(duì)定位[J]. 武漢大學(xué)學(xué)報(bào): 信息科學(xué)版, 2016, 41(8): 1125–1130. doi: 10.13203/j.whugis20140439GUO Li, LI Jinling, TONG Fengxian, et al. Precisely relative positioning of Chang’E 3 rover with SBI delta VLBI delay measurements[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1125–1130. doi: 10.13203/j.whugis20140439 鄭鑫, 劉慶會(huì), 吳亞軍, 等. 雙月球探測(cè)器相對(duì)定位的同波束VLBI技術(shù)研究[J]. 宇航學(xué)報(bào), 2014, 35(9): 1030–1035. doi: 10.3873/j.issn.1000-1328.2014.09.007ZHENG Xin, LIU Qinghui, WU Yajun, et al. Research on same-beam VLBI technique for relative position determination of two lunar spacecrafts[J]. Journal of Astronautics, 2014, 35(9): 1030–1035. doi: 10.3873/j.issn.1000-1328.2014.09.007 劉慶會(huì), 吳亞軍, 黃勇, 等. 基于同波束VLBI的火星車測(cè)定位技術(shù)[J]. 中國(guó)科學(xué): 物理學(xué) 力學(xué) 天文學(xué), 2015, 45(9): 099502. doi: 10.1360/SSPMA2015-00287LIU Qinghui, WU Yajun, HUANG Yong, et al. Mars rover positioning technology based on same-beam VLBI[J]. Scientia Sinica Physica,Mechanica &Astronomica, 2015, 45(9): 099502. doi: 10.1360/SSPMA2015-00287 BORDER J S, FOLKNER W M, KAHN R D, et al. Precise tracking of the Magellan and pioneer Venus orbiters by same-beam interferometry Part I: Data accuracy analysis[R]. TDA Progress Report 42-110, 1992. 劉慶會(huì), 陳明, GOOSSENS S, et al. 同波束VLBI在采樣返回式多目標(biāo)探測(cè)器精密測(cè)軌測(cè)位中的應(yīng)用[J]. 中國(guó)科學(xué): 物理學(xué) 力學(xué) 天文學(xué), 2010, 53(6): 1153–1161.LIU Qinghui, CHEN Ming, GOOSSENS S, et al. Applications of same-beam VLBI in the orbit determination of multi-spacecrafts in a lunar sample-return mission[J]. Science China Physics,Mechanics &Astronomy, 2010, 53(6): 1153–1161. 劉慶會(huì), 史弦, 菊池冬彥, 等. 上海和烏魯木齊射電望遠(yuǎn)鏡的超高精度同波束VLBI觀測(cè)[J]. 中國(guó)科學(xué) G輯: 物理學(xué) 力學(xué) 天文學(xué), 2009, 52(12): 1858–1866.LIU Qinghui, SHI Xian, FUYUHIKO K, et al. High-accuracy same-beam VLBI observations using Shanghai and Urumqi telescopes[J]. Science in China Series G-Physics,Mechanics &Astronomy, 2009, 52(12): 1858–1866. 鳳凰網(wǎng)資訊. 嫦娥四號(hào)中繼星" 鵲橋”順利進(jìn)入使命軌道運(yùn)行[EB/OL]. http://news.ifeng.com/a/20180614/58718025_0.shtml, 2018. 唐歌實(shí). 深空測(cè)控?zé)o線電測(cè)量技術(shù)[M]. 北京: 國(guó)防工業(yè)出版社, 2012: 109–122.TANG Geshi. Radiometric Measuring Techniques for Deep Space Navigation[M]. Beijing: National Defend Industry Press, 2012: 109–122. 劉慶會(huì). 同波束VLBI技術(shù)在深空探測(cè)器測(cè)定軌中的應(yīng)用[J]. 遙測(cè)遙控, 2016, 37(6): 36–44. doi: 10.3969/j.issn.2095-1000.2016.06.004LIU Qinghui. Applications of same-beam VLBI technology in orbit determination of deep space satellites[J]. Journal of Telemetry,Tracking and Command, 2016, 37(6): 36–44. doi: 10.3969/j.issn.2095-1000.2016.06.004 姜坤, 王元?dú)J, 馬宏, 等. 甚長(zhǎng)基線干涉測(cè)量數(shù)字基帶轉(zhuǎn)換器子通道時(shí)延影響分析[J]. 電子與信息學(xué)報(bào), 2014, 36(6): 1509–1514.JIANG Kun, WANG Yuanqin, MA Hong, et al. Impact analysis of the sub-channel delay in Very Long Baseline Interferometry digital baseband converter[J]. Journal of Electronics &Information Technology, 2014, 36(6): 1509–1514. 喻業(yè)釗, 韓雷, 周爽, 等. 佳木斯66 m射電望遠(yuǎn)鏡指向精度測(cè)量及改進(jìn)[J]. 天文研究與技術(shù), 2016, 13(4): 408–415. doi: 10.3969/j.issn.1672-7673.2016.04.004YU Yezhao, HAN Lei, ZHOU Shuang, et al. A study on the measurements and improvements of pointing accuracy of Jiamusi 66 m radio telescope[J]. Astronomical Research and Technology, 2016, 13(4): 408–415. doi: 10.3969/j.issn.1672-7673.2016.04.004 -