一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級(jí)搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁(yè)添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號(hào)碼
標(biāo)題
留言內(nèi)容
驗(yàn)證碼

卷積神經(jīng)網(wǎng)絡(luò)在雷達(dá)自動(dòng)目標(biāo)識(shí)別中的研究進(jìn)展

賀豐收 何友 劉準(zhǔn)釓 徐從安

賀豐收, 何友, 劉準(zhǔn)釓, 徐從安. 卷積神經(jīng)網(wǎng)絡(luò)在雷達(dá)自動(dòng)目標(biāo)識(shí)別中的研究進(jìn)展[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 119-131. doi: 10.11999/JEIT180899
引用本文: 賀豐收, 何友, 劉準(zhǔn)釓, 徐從安. 卷積神經(jīng)網(wǎng)絡(luò)在雷達(dá)自動(dòng)目標(biāo)識(shí)別中的研究進(jìn)展[J]. 電子與信息學(xué)報(bào), 2020, 42(1): 119-131. doi: 10.11999/JEIT180899
Fengshou HE, You HE, Zhunga LIU, Cong’an XU. Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119-131. doi: 10.11999/JEIT180899
Citation: Fengshou HE, You HE, Zhunga LIU, Cong’an XU. Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119-131. doi: 10.11999/JEIT180899

卷積神經(jīng)網(wǎng)絡(luò)在雷達(dá)自動(dòng)目標(biāo)識(shí)別中的研究進(jìn)展

doi: 10.11999/JEIT180899 cstr: 32379.14.JEIT180899
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61672431, 61790550, 91538201)
詳細(xì)信息
    作者簡(jiǎn)介:

    賀豐收:男,1979年生,高級(jí)工程師,博士生,研究方向?yàn)槔走_(dá)數(shù)據(jù)處理,多源信息融合,深度神經(jīng)網(wǎng)絡(luò)等

    何友:男,1956年生,中國(guó)工程院院士,博士生導(dǎo)師,研究方向?yàn)槎嘣葱畔⑷诤?,信?hào)檢測(cè),雷達(dá)數(shù)據(jù)處理等

    劉準(zhǔn)釓:男,1984年生,教授,研究方向?yàn)槎嘣葱畔⑷诤希C據(jù)推理,模式識(shí)別

    徐從安:男,1987年生,博士,講師,研究方向?yàn)槎嗄繕?biāo)跟蹤,信息融合等

    通訊作者:

    賀豐收 hefengshou1979@163.com

  • 中圖分類號(hào): TN953

Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition

Funds: The National Natural Science Foundation of China (61672431, 61790550, 91538201)
  • 摘要:

    自動(dòng)目標(biāo)識(shí)別(ATR)是雷達(dá)信息處理領(lǐng)域的重要研究方向。由于卷積神經(jīng)網(wǎng)絡(luò)(CNN)無需進(jìn)行特征工程,圖像分類性能優(yōu)越,因此在雷達(dá)自動(dòng)目標(biāo)識(shí)別領(lǐng)域研究中受到越來越多的關(guān)注。該文綜合論述了CNN在雷達(dá)圖像處理中的應(yīng)用進(jìn)展。首先介紹了雷達(dá)自動(dòng)目標(biāo)識(shí)別相關(guān)知識(shí),包括雷達(dá)圖像的特性,并指出了傳統(tǒng)的雷達(dá)自動(dòng)目標(biāo)識(shí)別方法局限性。給出了CNN卷積神經(jīng)網(wǎng)絡(luò)原理、組成和在計(jì)算機(jī)視覺領(lǐng)域的發(fā)展歷程。然后著重介紹了CNN在雷達(dá)自動(dòng)目標(biāo)識(shí)別中的研究現(xiàn)狀,其中詳細(xì)介紹了合成孔徑雷達(dá)(SAR)圖像目標(biāo)的檢測(cè)與識(shí)別方法。接下來對(duì)雷達(dá)自動(dòng)目標(biāo)識(shí)別面臨的挑戰(zhàn)進(jìn)行了深入分析。最后對(duì)CNN新理論、新模型,以及雷達(dá)新成像技術(shù)和未來復(fù)雜環(huán)境下的應(yīng)用進(jìn)行了展望。

  • 圖  1  LeNet-5網(wǎng)絡(luò)的結(jié)構(gòu)示意圖

    圖  2  ILSVRC歷年的冠軍成績(jī)

    圖  3  深度網(wǎng)絡(luò)和深度卷積網(wǎng)絡(luò)在雷達(dá)圖像領(lǐng)域發(fā)表的文章數(shù)示意圖

    表  1  光學(xué)圖像和雷達(dá)圖像的差異

    特性光學(xué)圖像雷達(dá)圖像
    波段可見光,紅外微波段
    信號(hào)形式多波段灰度信息單波段復(fù)信號(hào)
    成像原理能量聚焦積累相位相干積累
    尺度特性和成像距離有關(guān)目標(biāo)尺寸不隨成像距離變化
    成像方向俯仰角-方位角距離向-方位角
    下載: 導(dǎo)出CSV

    表  2  部分典型網(wǎng)絡(luò)的參數(shù)總結(jié)

    LeNet5AlexNetOverfeatfastVGG16GoogleNetV1ResNet50
    輸入圖像尺寸28×28227×227231×231224×224224×224224×224
    卷積層數(shù)量255135753
    全連接層數(shù)量233311
    卷積核大小53,5,113,5,1131,3,5,71,3,7
    步長(zhǎng)11,41,411,21,2
    權(quán)值參數(shù)數(shù)量60 k61 M146 M138 M7 M25.5 M
    乘積運(yùn)算數(shù)量341 k724 M2.8 G15.5 G1.43 G3.9 G
    Top-5誤差16.414.27.46.75.25
    下載: 導(dǎo)出CSV

    表  3  MSTAR數(shù)據(jù)集的目標(biāo)類型和樣本數(shù)量

    數(shù)據(jù)集2S1BMP2BRD M2BTR 60BTR 70D7T62T72ZIL 131ZSU 234
    訓(xùn)練集299233298256233299299298299299
    測(cè)試集274587274195196274196274274274
    下載: 導(dǎo)出CSV

    表  4  常見數(shù)據(jù)增強(qiáng)技術(shù)

    名稱主要方法
    旋轉(zhuǎn)變換將圖像旋轉(zhuǎn)一定角度
    翻轉(zhuǎn)變換沿水平或垂直方向翻轉(zhuǎn)圖像
    縮放變換放大或縮小圖像
    平移變換在圖像平面上對(duì)圖像進(jìn)行平移
    尺度變換對(duì)圖像按照置頂?shù)某叨纫蜃舆M(jìn)行縮放,改變圖像內(nèi)容的大小或模糊程度
    反射變換對(duì)稱變換,包括軸反射變換和鏡面反射變換
    噪聲擾動(dòng)在圖像內(nèi)增加噪聲,如指數(shù)噪聲,高斯噪聲,瑞利噪聲,椒鹽噪聲等
    下載: 導(dǎo)出CSV

    表  5  基于CNN的目標(biāo)檢測(cè)方法對(duì)比

    方法提出場(chǎng)合核心思想MAP(%)主要特點(diǎn)
    候選窗方法RCNNECCV 2014選擇搜索方法生成候選窗66.0訓(xùn)練分多個(gè)階段,每個(gè)候選窗都需要用CNN處理,占用磁盤空間大,處理效率低
    Fast RCNNICCV2015加入了SPPnet70.0選擇搜索方法生成候選窗,耗時(shí)長(zhǎng),無法滿足實(shí)時(shí)應(yīng)用
    Faster RCNNNIPS2015提出了RPN網(wǎng)絡(luò),融合區(qū)域生成與CNN73.2性能與速度較好的折中,但區(qū)域生成方式計(jì)算量依然很大,不能實(shí)時(shí)處理
    R-FCNNIPS2016RPN+位置敏感的預(yù)測(cè)層+ROI polling+投票決策層76.6速度比Faster RCNN快,且精度相當(dāng)
    回歸方法YOLOCVPR2016將檢測(cè)問題變?yōu)榛貧w問題57.9沒有區(qū)域生成步驟,網(wǎng)格回歸的定位性能較弱,檢測(cè)精度不高。
    SSDECCV2016YOLO+Proposal+多尺度73.9速度非??欤阅芤膊诲e(cuò)
    下載: 導(dǎo)出CSV

    表  6  CNN在雷達(dá)圖像識(shí)別應(yīng)用進(jìn)展的思想與方法概要

    提升類型主要思想引用文獻(xiàn)和方法概要說明
    快速算法快速尋優(yōu)預(yù)訓(xùn)練文獻(xiàn)[47]:帶動(dòng)量小批量隨機(jī)梯度下降,快速尋找全局最優(yōu)點(diǎn)
    文獻(xiàn)[45]:預(yù)訓(xùn)練較淺卷積網(wǎng)絡(luò),實(shí)現(xiàn)無監(jiān)督快速檢測(cè)。
    文獻(xiàn)[53]:用大樣本數(shù)據(jù)對(duì)卷積網(wǎng)絡(luò)進(jìn)行預(yù)訓(xùn)練
    用其他結(jié)構(gòu)取代全連接層文獻(xiàn)[40,47]:低自由度稀疏連通卷積結(jié)構(gòu)
    文獻(xiàn)[39]:SVM代替FC
    文獻(xiàn)[53]:用超限學(xué)習(xí)機(jī)替換FC
    抽取特征再訓(xùn)練文獻(xiàn)[54]:先抽取特征再訓(xùn)練的兩步快速訓(xùn)練方法
    提升算法提高網(wǎng)絡(luò)的泛化能力文獻(xiàn)[47]:Dropout和早期停止
    文獻(xiàn)[52]:將卷積層與2維PCA方法結(jié)合
    代價(jià)函數(shù)改進(jìn)文獻(xiàn)[46]:代價(jià)函數(shù)中引入類別可分性度量提高類別區(qū)分能力
    含噪樣本訓(xùn)練文獻(xiàn)[49]:基于概率轉(zhuǎn)移模型增強(qiáng)含噪標(biāo)記下分類模型魯棒性。
    擴(kuò)展算法遷移學(xué)習(xí)文獻(xiàn)[26,53,55]:大樣本預(yù)訓(xùn)練,遷移學(xué)習(xí)加快訓(xùn)練速度
    CAD模型仿真文獻(xiàn)[56]: 采用CAD模型目標(biāo)仿真解決SAR真實(shí)數(shù)據(jù)有限問題
    文獻(xiàn)[57]: CAD模型生成不同方位和俯仰角度的HRRP圖像
    預(yù)處理提升信息的利用率文獻(xiàn)[41]:形態(tài)學(xué)成分分析預(yù)處理提升性能
    文獻(xiàn)[58]:采用去噪自編碼器預(yù)訓(xùn)練
    小樣本深度訓(xùn)練網(wǎng)絡(luò)文獻(xiàn)[42,44]:卷積高速公路單元在小樣本條件下訓(xùn)練深度網(wǎng)絡(luò)
    文獻(xiàn)[59]:無監(jiān)督和有監(jiān)督訓(xùn)練結(jié)合,應(yīng)對(duì)標(biāo)簽數(shù)據(jù)有限情況
    下載: 導(dǎo)出CSV
  • KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
    陳小龍, 關(guān)鍵, 何友, 等. 高分辨稀疏表示及其在雷達(dá)動(dòng)目標(biāo)檢測(cè)中的應(yīng)用[J]. 雷達(dá)學(xué)報(bào), 2017, 6(3): 239–251. doi: 10.12000/JR16110

    CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110
    BALL J E, ANDERSON D T, and CHAN C S. Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042609. doi: 10.1117/1.JRS.11.042609
    PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. doi: 10.1109/tgrs.2017.2776357
    GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Cambridge, Massachusetts: MIT Press, 2016.
    LECUN Yann, BOTTOU Léon, BENGIO Yoshua, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    RUSSAKOVSKY O, DENG Jia, SU Hao, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. http://arxiv.org/abs/1409.1556, 2014.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL]. https://arxiv.org/abs/1709.01507, 2017.
    許強(qiáng), 李偉, LOUMBI P. 深度卷積神經(jīng)網(wǎng)絡(luò)在SAR自動(dòng)目標(biāo)識(shí)別領(lǐng)域的應(yīng)用綜述[J]. 電訊技術(shù), 2018, 58(1): 106–112. doi: 10.3969/j.issn.1001-893x.2018.01.019

    XU Qiang, LI Wei, and LOUMBI P. Applications of Deep convolutional neural network in SAR automatic target recognition: a summarization[J]. Telecommunication Engineering, 2018, 58(1): 106–112. doi: 10.3969/j.issn.1001-893x.2018.01.019
    蘇寧遠(yuǎn), 陳小龍, 關(guān)鍵, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的海上微動(dòng)目標(biāo)檢測(cè)與分類方法[J]. 雷達(dá)學(xué)報(bào), 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    杜蘭, 劉彬, 王燕, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的SAR圖像目標(biāo)檢測(cè)算法[J]. 電子與信息學(xué)報(bào), 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032

    DU Lan, LIU Bin, WANG Yan, et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 346–361.
    GIRSHICK R. Fast R-CNN[C]. The IEEE international Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 379–387.
    KONG Tao, YAO Anbang, CHEN Yurong, et al. Hypernet: Towards accurate region proposal generation and joint object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 845–853.
    LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    HE Kaiming, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
    WANG Sifei, CUI Zongyong, and CAO Zongjie. Target recognition in large scene SAR images based on region proposal regression[C]. The 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 3297–3300.
    LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. The 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–6.
    KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]. The 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 2017: 1–4.
    KANG Miao, JI Kefeng, LENG Xiangguang, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8): 860. doi: 10.3390/rs9080860
    JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20896. doi: 10.1109/ACCESS.2018.2825376
    ZHONG Yanfei, HAN Xiaobing, and ZHANG Liangpei. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 281–294. doi: 10.1016/j.isprsjprs.2018.02.014
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. Combing single shot multibox detector with transfer learning for ship detection using Chinese Gaofen-3 images[C]. The 2017 Progress in Electromagnetics Research Symposium - Fall, Singapore, 2018: 712–716.
    WANG Yuanyuan, WANG Chao, and ZHANG Hong. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images[J]. Remote Sensing Letters, 2018, 9(8): 780–788. doi: 10.1080/2150704X.2018.1475770
    KONG Tao, SUN Fuchun, YAO Anbang, et al. Ron: Reverse connection with objectness prior networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5244–5252.
    CUI Zongyong, DANG Sihang, CAO Zongjie, et al. SAR target recognition in large scene images via region-based convolutional neural networks[J]. Remote Sensing, 2018, 10(5): 776. doi: 10.3390/rs10050776
    NI Jiacheng and XU Yuelei. SAR automatic target recognition based on a visual cortical system[C]. The 6th International Congress on Image and Signal Processing, Hangzhou, China, 2013: 778–782.
    CHEN Sizhe and WANG Haipeng. SAR target recognition based on deep learning[C]. The 2014 International Conference on Data Science and Advanced Analytics, Shanghai, China, 2014: 541–547.
    WAGNER S. Combination of convolutional feature extraction and support vector machines for radar ATR[C]. The 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–6.
    WANG Haipeng, CHEN Sizhe, XU Feng, et al. Application of deep-learning algorithms to MSTAR data[C]. The 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 3743–3745.
    WAGNER S. Morphological component analysis in SAR images to improve the generalization of ATR systems[C]. The 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 46–50.
    SCHWEGMANN C P, KLEYNHANS W, SALMON B P, et al. Very deep learning for ship discrimination in Synthetic Aperture Radar imagery[C]. The 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 104–107.
    CHO J H and PARK C G. Additional feature CNN based automatic target recognition in SAR image[C]. The 40th Asian Conference on Defence Technology, Tokyo, Japan, 2017: 1–4.
    LIN Zhao, JI Kefeng, KANG Miao, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. doi: 10.1109/lgrs.2017.2698213
    HE Hao, WANG Shicheng, YANG Dongfang, et al. SAR target recognition and unsupervised detection based on convolutional neural network[C]. The 2017 Chinese Automation Congress, Jinan, China, 2017: 435–438.
    田壯壯, 占榮輝, 胡杰民, 等. 基于卷積神經(jīng)網(wǎng)絡(luò)的SAR圖像目標(biāo)識(shí)別研究[J]. 雷達(dá)學(xué)報(bào), 2016, 5(3): 320–325. doi: 10.12000/JR16037

    TIAN Zhuangzhuang, ZHAN Ronghui, HU Jiemin, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. doi: 10.12000/JR16037
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/tgrs.2016.2551720
    WILMANSKI M, KREUCHER C, and LAUER J. Modern approaches in deep learning for SAR ATR[J]. SPIE, 2016, 9843: 98430N. doi: 10.1117/12.2220290
    趙娟萍, 郭煒煒, 柳彬, 等. 基于概率轉(zhuǎn)移卷積神經(jīng)網(wǎng)絡(luò)的含噪標(biāo)記SAR圖像分類[J]. 雷達(dá)學(xué)報(bào), 2017, 6(5): 514–523. doi: 10.12000/JR16140

    ZHAO Juanping, GUO Weiwei, LIU Bin, et al. Convolutional neural network-based SAR image classification with noisy labels[J]. Journal of Radars, 2017, 6(5): 514–523. doi: 10.12000/JR16140
    AMRANI M and JIANG Feng. Deep feature extraction and combination for synthetic aperture radar target classification[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042616. doi: 10.1117/1.Jrs.11.042616
    WANG Ning, WANG Yinghua, LIU Hongwei, et al. Feature-fused SAR target discrimination using multiple convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1695–1699. doi: 10.1109/lgrs.2017.2729159
    ZHENG Ce, JIANG Xue, and LIU Xingzhao. Generalized synthetic aperture radar automatic target recognition by convolutional neural network with joint use of two-dimensional principal component analysis and support vector machine[J]. Journal of Applied Remote Sensing, 2017, 11(4): 046007. doi: 10.1117/1.Jrs.11.046007
    劉晨, 曲長(zhǎng)文, 周強(qiáng), 等. 基于卷積神經(jīng)網(wǎng)絡(luò)遷移學(xué)習(xí)的SAR圖像目標(biāo)分類[J]. 現(xiàn)代雷達(dá), 2018, 40(3): 38–42. doi: 10.16592/j.cnki.1004-7859.2018.03.009

    LIU Chen, QU Changwen, ZHOU Qiang, et al. SAR image target classification based on convolutional neural network transfer learning[J]. Modern Radar, 2018, 40(3): 38–42. doi: 10.16592/j.cnki.1004-7859.2018.03.009
    LI Xuan, LI Chunsheng, WANG Pengbo, et al. SAR ATR based on dividing CNN into CAE and SNN[C]. The 5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015: 676–679.
    李松, 魏中浩, 張冰塵, 等. 深度卷積神經(jīng)網(wǎng)絡(luò)在遷移學(xué)習(xí)模式下的SAR目標(biāo)識(shí)別[J]. 中國(guó)科學(xué)院大學(xué)學(xué)報(bào), 2018, 35(1): 75–83. doi: 10.7523/j.issn.2095-6134.2018.01.010

    LI Song, WEI Zhonghao, ZHANG Bingchen, et al. Target recognition using the transfer learning-based deep convolutional neural networks for SAR images[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(1): 75–83. doi: 10.7523/j.issn.2095-6134.2018.01.010
    ?DEGAARD N, KNAPSKOG A O, COCHIN C, et al. Classification of ships using real and simulated data in a convolutional neural network[C]. The 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    KARABAYIR O, YUCEDAG O M, KARTAL M Z, et al. Convolutional neural networks-based ship target recognition using high resolution range profiles[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017.
    BENTES C, VELOTTO D, and LEHNER S. Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results[C]. The 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 3703–3706.
    WANG Zhaocheng, DU Lan, WANG Fei, et al. Multi-scale target detection in SAR image based on visual attention model[C]. The 5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015: 704–709.
    YUAN Lele. A time-frequency feature fusion algorithm based on neural network for HRRP[J]. Progress in Electromagnetics Research, 2017, 55: 63–71. doi: 10.2528/PIERM16123002
    BENGIO Y, MESNARD T, FISCHER A, et al. STDP-compatible approximation of backpropagation in an energy-based model[J]. Neural Computation, 2017, 29(3): 555–577. doi: 10.1162/NECO_a_00934
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. http://arxiv.org/abs/1704.04861, 2017.
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
  • 加載中
圖(3) / 表(6)
計(jì)量
  • 文章訪問數(shù):  7361
  • HTML全文瀏覽量:  3133
  • PDF下載量:  1031
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-09-18
  • 修回日期:  2019-02-18
  • 網(wǎng)絡(luò)出版日期:  2019-03-21
  • 刊出日期:  2020-01-21

目錄

    /

    返回文章
    返回