一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機(jī)號碼
標(biāo)題
留言內(nèi)容
驗證碼

基于信道狀態(tài)信息幅值-相位的被動式室內(nèi)指紋定位

江小平 王妙羽 丁昊 李成華

江小平, 王妙羽, 丁昊, 李成華. 基于信道狀態(tài)信息幅值-相位的被動式室內(nèi)指紋定位[J]. 電子與信息學(xué)報, 2020, 42(5): 1165-1171. doi: 10.11999/JEIT180871
引用本文: 江小平, 王妙羽, 丁昊, 李成華. 基于信道狀態(tài)信息幅值-相位的被動式室內(nèi)指紋定位[J]. 電子與信息學(xué)報, 2020, 42(5): 1165-1171. doi: 10.11999/JEIT180871
Xiaoping JIANG, Miaoyu WANG, Hao DING, Chenghua LI. Passive Fingerprint Indoor Positioning Based on CSI Amplitude-phase[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1165-1171. doi: 10.11999/JEIT180871
Citation: Xiaoping JIANG, Miaoyu WANG, Hao DING, Chenghua LI. Passive Fingerprint Indoor Positioning Based on CSI Amplitude-phase[J]. Journal of Electronics & Information Technology, 2020, 42(5): 1165-1171. doi: 10.11999/JEIT180871

基于信道狀態(tài)信息幅值-相位的被動式室內(nèi)指紋定位

doi: 10.11999/JEIT180871 cstr: 32379.14.JEIT180871
基金項目: 國家自然科學(xué)基金(61402544),中南民族大學(xué)中央高校專項(CZQ14001),湖北省自然科學(xué)基金(2017CFB874),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(CZY17001)
詳細(xì)信息
    作者簡介:

    江小平:男,1974年生,副教授,研究方向為信號與信息處理

    王妙羽:女,1994年生,碩士生,研究方向為通信與信息系統(tǒng)

    丁昊:男,1980年生,講師,研究方向為圖像信號處理,神經(jīng)網(wǎng)絡(luò)和壓縮感知

    李成華:男,1972年生,副教授,研究方向為計算機(jī)應(yīng)用

    通訊作者:

    王妙羽 2016110191@mail.scuec.edu.cn

  • 中圖分類號: TN911.7

Passive Fingerprint Indoor Positioning Based on CSI Amplitude-phase

Funds: The Natural Science Foundation of China (61402544), Central South University for Nationalities of China Central University Special Project (CZQ14001), The Nature Science Foundation of Huibei Province (2017CFB874), The Fundamental Research Funds for the Central University (CYZ17001)
  • 摘要:

    基于信道狀態(tài)信息(CSI)的室內(nèi)定位技術(shù)近幾年備受關(guān)注。已提出的室內(nèi)定位方案主要在適用性和定位精度等方面進(jìn)行不斷地創(chuàng)新和改進(jìn)。該文提出一種被動式的1發(fā)2收指紋室內(nèi)定位系統(tǒng)。用兩個固定接收端采集CSI數(shù)據(jù),信號預(yù)處理階段對CSI幅值進(jìn)行奇異值去除與低通濾波,用線性擬合的方法對CSI相位進(jìn)行校正,將兩個接收端采集處理得到的CSI幅值和相位信息共同作為指紋,最終通過全連接神經(jīng)網(wǎng)絡(luò)對指紋樣本進(jìn)行訓(xùn)練,并與采集到的實時數(shù)據(jù)進(jìn)行匹配識別。實驗表明,采用兩個接收端以及幅值和相位結(jié)合定位的方法,匹配識別率達(dá)到了98%,定位精度達(dá)到0.69 m。證明該系統(tǒng)能精確有效地實現(xiàn)室內(nèi)定位。

  • 圖  1  系統(tǒng)流程圖

    圖  2  預(yù)處理結(jié)果

    圖  3  幅值-相位指紋

    圖  4  實驗場景平面圖

    圖  5  匹配識別率

    圖  6  定位誤差

    圖  7  訓(xùn)練數(shù)據(jù)包數(shù)量對系統(tǒng)性能的影響

    表  1  不同算法在不同場景定位誤差(m)

    空房間 實驗室
    平均誤差誤差方差平均誤差誤差方差
    本文方案0.690.36 1.251.01
    PhaseFi0.940.561.811.34
    DeepFi1.080.412.011.01
    CSI-MIMO1.550.622.701.42
    下載: 導(dǎo)出CSV
  • ZHUANG Yuan, YANG Jun, LI You, et al. Smartphone-based indoor localization with bluetooth low energy beacons[J]. Sensors, 2016, 16(5): No. 596. doi: 10.3390/s16050596
    BANDIRMALI N and TORLAK M. ERLAK: On the cooperative estimation of the real-time RSSI based location and k constant term[J]. Wireless Personal Communications, 2017, 95(4): 3923–3932. doi: 10.1007/s11277-017-4032-7
    KOO J and CHA Hojung. Localizing WiFi access points using signal strength[J]. IEEE Communications Letters, 2011, 15(2): 187–189. doi: 10.1109/LCOMM.2011.121410.101379
    LI Jinsong, LI Yunzhou, and JI Xinsheng. A novel method of Wi-Fi indoor localization based on channel state information[C]. The 8th International Conference on Wireless Communications & Signal Processing, Yangzhou, China, 2016: 1–5.
    WU Yang, GONG Liangyi, MAN Dapeng, et al. Enhancing the performance of indoor device-free passive localization[J]. International Journal of Distributed Sensor Networks, 2015, 2015: 256162. doi: 10.1155/2015/256162
    WANG Xuyu, GAO Lingjun, MAO Shiwen, et al. DeepFi: Deep learning for indoor fingerprinting using channel state information[C]. 2015 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 2015: 1666–1671.
    WANG Xuyu, GAO Lingjun, and MAO Shiwen. CSI phase fingerprinting for indoor localization with a deep learning approach[J]. IEEE Internet of Things Journal, 2016, 3(6): 1113–1123. doi: 10.1109/JIOT.2016.2558659
    ZHOU Rui, LU Xiang, ZHAO Pengbiao, et al. Device-free presence detection and localization with SVM and CSI fingerprinting[J]. IEEE Sensors Journal, 2017, 17(23): 7990–7999. doi: 10.1109/JSEN.2017.2762428
    CHAPRE Y, IGNJATOVIC A, SENEVIRATNE A, et al. CSI-MIMO: Indoor Wi-Fi fingerprinting system[C]. The 39th Annual IEEE Conference on Local Computer Networks, Edmonton, Canada, 2014: 202–209.
    YANG Zheng, ZHOU Zimu, and LIU Yunhao. From RSSI to CSI: Indoor localization via channel response[J]. ACM Computing Surveys, 2013, 46(2): No. 25. doi: 10.1145/2543581.2543592
    WU Chenshu, YANG Zheng, and LIU Yunhao. Smartphones based crowdsourcing for indoor localization[J]. IEEE Transactions on Mobile Computing, 2015, 14(2): 444–457. doi: 10.1109/TMC.2014.2320254
    WANG Yan, LIU Jian, CHEN Yingying, et al. E-eyes: Device-free location-oriented activity identification using fine-grained WiFi signatures[C]. The 20th Annual International Conference on Mobile Computing and Networking, Maui, USA, 2014: 617–628.
    ZHOU Yiwei, ZHU Hongzi, XUE Hua, et al. Perceiving accurate CSI phases with commodity WiFi devices[C]. IEEE NFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9.
    WANG Xuyu, YANG Chao, and MAO Shiwen. TensorBeat: Tensor decomposition for monitoring multiperson breathing beats with commodity WiFi[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(1): No. 8. doi: 10.1145/3078855
    BRUNATO M and BATTITI R. Statistical learning theory for location fingerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6): 825–845. doi: 10.1016/j.comnet.2004.09.004
  • 加載中
圖(7) / 表(1)
計量
  • 文章訪問數(shù):  2834
  • HTML全文瀏覽量:  971
  • PDF下載量:  129
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-09-06
  • 修回日期:  2019-09-25
  • 網(wǎng)絡(luò)出版日期:  2020-01-11
  • 刊出日期:  2020-06-04

目錄

    /

    返回文章
    返回