基于信道狀態(tài)信息幅值-相位的被動式室內(nèi)指紋定位
doi: 10.11999/JEIT180871 cstr: 32379.14.JEIT180871
-
1.
中南民族大學(xué)電子信息工程學(xué)院 武漢 430074
-
2.
湖北省智能無線通信重點(diǎn)實驗室 武漢 430074
Passive Fingerprint Indoor Positioning Based on CSI Amplitude-phase
-
1.
School of Electronic Engineering, South-central University for Nationalities, Wuhan 430074, China
-
2.
Hubei Province Key Laboratory of Intelligent Wireless Communication, Wuhan 430074, China
-
摘要:
基于信道狀態(tài)信息(CSI)的室內(nèi)定位技術(shù)近幾年備受關(guān)注。已提出的室內(nèi)定位方案主要在適用性和定位精度等方面進(jìn)行不斷地創(chuàng)新和改進(jìn)。該文提出一種被動式的1發(fā)2收指紋室內(nèi)定位系統(tǒng)。用兩個固定接收端采集CSI數(shù)據(jù),信號預(yù)處理階段對CSI幅值進(jìn)行奇異值去除與低通濾波,用線性擬合的方法對CSI相位進(jìn)行校正,將兩個接收端采集處理得到的CSI幅值和相位信息共同作為指紋,最終通過全連接神經(jīng)網(wǎng)絡(luò)對指紋樣本進(jìn)行訓(xùn)練,并與采集到的實時數(shù)據(jù)進(jìn)行匹配識別。實驗表明,采用兩個接收端以及幅值和相位結(jié)合定位的方法,匹配識別率達(dá)到了98%,定位精度達(dá)到0.69 m。證明該系統(tǒng)能精確有效地實現(xiàn)室內(nèi)定位。
-
關(guān)鍵詞:
- 室內(nèi)定位 /
- 信道狀態(tài)信息 /
- 幅值-相位指紋 /
- 神經(jīng)網(wǎng)絡(luò)
Abstract:Indoor positioning technology based on Channel State Information (CSI) receives much attention in recent years. The existing indoor positioning solution is continuously innovative and improved in terms of deployment implementation and positioning accuracy. This paper proposes a passive one-transmitter two-receivers fingerprint indoor positioning system. The CSI data is collected by two fixed receiving end-devices. In the signal preprocessing stage, the CSI amplitude is singular value removed and low pass filtered, and the CSI phase is corrected by a linear fitting method, and the CSI amplitude and phase information obtained by the two receiving ends are collectively used as fingerprint samples. The fingerprint samples are finally trained through the fully connected neural network, and matched with the collected real-time data. Experiments show that the matching recognition rate reaches 98% by using two receivers and the combination of amplitude and phase positioning, and the positioning accuracy is 0.69 m. It proves that the system can accurately and effectively achieve indoor positioning.
-
表 1 不同算法在不同場景定位誤差(m)
空房間 實驗室 平均誤差 誤差方差 平均誤差 誤差方差 本文方案 0.69 0.36 1.25 1.01 PhaseFi 0.94 0.56 1.81 1.34 DeepFi 1.08 0.41 2.01 1.01 CSI-MIMO 1.55 0.62 2.70 1.42 下載: 導(dǎo)出CSV
-
ZHUANG Yuan, YANG Jun, LI You, et al. Smartphone-based indoor localization with bluetooth low energy beacons[J]. Sensors, 2016, 16(5): No. 596. doi: 10.3390/s16050596 BANDIRMALI N and TORLAK M. ERLAK: On the cooperative estimation of the real-time RSSI based location and k constant term[J]. Wireless Personal Communications, 2017, 95(4): 3923–3932. doi: 10.1007/s11277-017-4032-7 KOO J and CHA Hojung. Localizing WiFi access points using signal strength[J]. IEEE Communications Letters, 2011, 15(2): 187–189. doi: 10.1109/LCOMM.2011.121410.101379 LI Jinsong, LI Yunzhou, and JI Xinsheng. A novel method of Wi-Fi indoor localization based on channel state information[C]. The 8th International Conference on Wireless Communications & Signal Processing, Yangzhou, China, 2016: 1–5. WU Yang, GONG Liangyi, MAN Dapeng, et al. Enhancing the performance of indoor device-free passive localization[J]. International Journal of Distributed Sensor Networks, 2015, 2015: 256162. doi: 10.1155/2015/256162 WANG Xuyu, GAO Lingjun, MAO Shiwen, et al. DeepFi: Deep learning for indoor fingerprinting using channel state information[C]. 2015 IEEE Wireless Communications and Networking Conference, New Orleans, USA, 2015: 1666–1671. WANG Xuyu, GAO Lingjun, and MAO Shiwen. CSI phase fingerprinting for indoor localization with a deep learning approach[J]. IEEE Internet of Things Journal, 2016, 3(6): 1113–1123. doi: 10.1109/JIOT.2016.2558659 ZHOU Rui, LU Xiang, ZHAO Pengbiao, et al. Device-free presence detection and localization with SVM and CSI fingerprinting[J]. IEEE Sensors Journal, 2017, 17(23): 7990–7999. doi: 10.1109/JSEN.2017.2762428 CHAPRE Y, IGNJATOVIC A, SENEVIRATNE A, et al. CSI-MIMO: Indoor Wi-Fi fingerprinting system[C]. The 39th Annual IEEE Conference on Local Computer Networks, Edmonton, Canada, 2014: 202–209. YANG Zheng, ZHOU Zimu, and LIU Yunhao. From RSSI to CSI: Indoor localization via channel response[J]. ACM Computing Surveys, 2013, 46(2): No. 25. doi: 10.1145/2543581.2543592 WU Chenshu, YANG Zheng, and LIU Yunhao. Smartphones based crowdsourcing for indoor localization[J]. IEEE Transactions on Mobile Computing, 2015, 14(2): 444–457. doi: 10.1109/TMC.2014.2320254 WANG Yan, LIU Jian, CHEN Yingying, et al. E-eyes: Device-free location-oriented activity identification using fine-grained WiFi signatures[C]. The 20th Annual International Conference on Mobile Computing and Networking, Maui, USA, 2014: 617–628. ZHOU Yiwei, ZHU Hongzi, XUE Hua, et al. Perceiving accurate CSI phases with commodity WiFi devices[C]. IEEE NFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. WANG Xuyu, YANG Chao, and MAO Shiwen. TensorBeat: Tensor decomposition for monitoring multiperson breathing beats with commodity WiFi[J]. ACM Transactions on Intelligent Systems and Technology, 2018, 9(1): No. 8. doi: 10.1145/3078855 BRUNATO M and BATTITI R. Statistical learning theory for location fingerprinting in wireless LANs[J]. Computer Networks, 2005, 47(6): 825–845. doi: 10.1016/j.comnet.2004.09.004 -