基于非正交多址接入的網(wǎng)絡切片聯(lián)合用戶關(guān)聯(lián)和功率分配算法
doi: 10.11999/JEIT180770 cstr: 32379.14.JEIT180770
-
1.
重慶郵電大學通信與信息工程學院 ??重慶 ??400065
-
2.
重慶郵電大學移動通信技術(shù)重點實驗室 ??重慶 ??400065
Joint User Association and Power Allocation Algorithm for Network Slicing Based on NOMA
-
1.
School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
2.
Key Laboratory of Mobile Communication Technology, Chongqing University of Post and Telecommunications, Chongqing 400065, China
-
摘要: 為了滿足網(wǎng)絡切片多樣化需求,實現(xiàn)無線虛擬資源的動態(tài)分配,該文提出在C-RAN架構(gòu)中基于非正交多址接入的聯(lián)合用戶關(guān)聯(lián)和功率資源分配算法。首先,該算法考慮在不完美信道條件下,以切片和用戶最小速率需求及時延QoS要求、系統(tǒng)中斷概率、前傳容量為約束,建立在C-RAN場景中最大化長時平均網(wǎng)絡切片總吞吐量的聯(lián)合用戶關(guān)聯(lián)和功率分配模型。其次,將概率混合優(yōu)化問題轉(zhuǎn)換為非概率優(yōu)化問題,并利用Lyapunov優(yōu)化理論設計一種基于當前時隙的聯(lián)合用戶調(diào)度和功率分配的算法。最后采用貪婪算法求得用戶關(guān)聯(lián)問題次優(yōu)解;基于用戶關(guān)聯(lián)的策略,將功率分配的問題利用連續(xù)凸逼近方法將其轉(zhuǎn)換為凸優(yōu)化問題并采用拉格朗日對偶分解方法獲得功率分配策略。仿真結(jié)果表明,該算法能滿足各網(wǎng)絡切片和用戶需求的同時有效提升系統(tǒng)時間平均切片總吞吐量。
-
關(guān)鍵詞:
- 網(wǎng)絡切片 /
- 資源分配 /
- 不完美信道狀態(tài)信息 /
- 非正交多址接入
Abstract: To satisfy the diversity of requirements for different network slices and realize dynamic allocation of wireless virtual resource, an algorithm for network slice joint user association and power allocation is proposed in Non-Orthogonal Multiple Access(NOMA) C-RAN. Firstly, by considering imperfect Channel State Information(CSI), a joint user association and power allocation algorithm is designed to maximize the average total throughput in C-RAN with the constraints of slice and user minimum required rate, outage probability and fronthaul capacity limits. Secondly, a joint user association and power allocation algorithm is designed according to the current slot by transforming the probabilistic mixed optimalization problem into a non-probabilistic optimalization problem and using Lyapunov optimization. Finally, for user association problem, a greedy algorithm is proposed to find a feasible suboptimal solution; The power allocation problem is transformed into a convex optimization problem by using successive convex approximation; Then a dual decomposition approach is exploited to obtain a power allocation strategy. Simulation results demonstrate that the proposed algorithm can effectively improve the average total throughput of system while guaranteeing the network slice and user requirement. -
表 1 仿真參數(shù)
參數(shù) 數(shù)值 RB數(shù)量 35 RB最大復用用戶數(shù) 3 RB帶寬 180 kHz RRH功率$p_l^{\max }$ 30 dBm fronthaul容量${ {{C} }_{l, \max } }$ 100 Mb/s 切片用戶最低速率需求 500 kb/s, 1 Mb/s, 2 Mb/s 用戶數(shù)據(jù)包到達率 3 packets/slot 路徑損耗衰落模型 157.4+32lg(d)(d[km]) 噪聲功率譜密度${N_0}$ –174 dBm/Hz 時隙長度,$\sigma _e^2$, ${\varepsilon _{\rm out}}$ 5 ms, 0.05, 0.10 下載: 導出CSV
-
LIU Gang, YU F R, JI Hong, et al. Distributed resource allocation in virtualized full-duplex relaying networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(10): 8444–8460. doi: 10.1109/TVT.2015.2513070 YIN Lei, QIU Ling, and CHEN Zheng. Throughput-maximum resource provision in the OFDMA-based wireless virtual network[C]. IEEE 85th Vehicular Technology Conference (VTCSpring), Sydney, Australia, 2017: 1–6. doi: 10.1109/VTCSpring.2017.8108502. SINAIE M, NG D W K, and JORSWIECK E A. Resource allocation in NOMA virtualized wireless networks under statistical delay constraints[J]. IEEE Wireless Communications Letters, 2018, 7(6): 954–957. doi: 10.1109/LWC.2018.2841852 DAWADI R, PARSAEEFARD S, DERAKHSHANI M, et al. Power-efficient resource allocation in NOMA virtualized wireless networks[C]. IEEE Global Communications Conference (GLOBECOM), Washington, USA, 2016: 1–6. doi: 10.1109/GLOCOM.2016.7842162. LEE Y L, LOO J, CHUAH T C, et al. Dynamic network slicing for multitenant heterogeneous cloud radio access networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2146–2161. doi: 10.1109/TWC.2017.2789294 HA V N and LE L B. End-to-end network slicing in virtualized OFDMA-based cloud radio access networks[J]. IEEE Access, 2017, 5: 18675–18691. doi: 10.1109/ACCESS.2017.2754461 IKKI S S and AISSA A. Two-way amplify-and-forward relaying with Gaussian imperfect channel estimations[J]. IEEE Communications Letters, 2012, 16(7): 956–959. doi: 10.1109/LCOMM.2012.050912.120103 WANG Xiaoming, ZHENG Fuchun, ZHU Pengcheng, et al. Energy-efficient resource allocation in coordinated downlink multicell OFDMA systems[J]. IEEE Transactions on Vehicular Technology, 2016, 65(3): 1395–1408. doi: 10.1109/TVT.2015.2413950 XIANG Xudong, LIN Chuang, CHEN Xin, et al. Toward optimal admission control and resource allocation for LTE-A femtocell uplink[J]. IEEE Transactions on Vehicular Technology, 2015, 64(7): 3247–3261. doi: 10.1109/TVT.2014.2351837 PAPANDRIOPOULOS J and EVANS J S. SCALE: A low-complexity distributed protocol for spectrum balancing in multiuser DSL networks[J]. IEEE Transactions on Information Theory, 2009, 55(8): 3711–3724. doi: 10.1109/TIT.2009.2023751 FOOLADIVANDA D and ROSENBERG C. Joint resource allocation and user association for heterogeneous wireless cellular networks[J]. IEEE Transactions on Wireless Communications, 2013, 12(1): 248–257. doi: 10.1109/TWC.2012.121112.120018 ZHU Jianyue, WANG Jiaheng, HUANG Yongming, et al. On optimal power allocation for downlink non-orthogonal multiple access systems[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2744–2757. doi: 10.1109/JSAC.2017.2725618 PARIDA P and DAS S S. Power allocation in OFDM based NOMA systems: A DC programming approach[C]. IEEE GLOBECOM Workshops, Austin, USA, 2015: 1026–1031. -