一種新型衛(wèi)星導(dǎo)航信號波形畸變特性評估新方法
doi: 10.11999/JEIT180656 cstr: 32379.14.JEIT180656
-
1.
地理信息工程國家重點實驗室 ??西安 ??710054
-
2.
中國科學(xué)院國家授時中心 ??西安 ??710600
-
3.
中國科學(xué)院大學(xué)天文與空間科學(xué)學(xué)院 ??北京 ??101408
Evil Waveform Evaluating Method for New GNSS Signals
-
1.
State Key Laboratory of Geo-information Engineering, Xi’an 710054, China
-
2.
National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
-
3.
School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 101408, China
-
摘要:
全球衛(wèi)星導(dǎo)航系統(tǒng)(GNSS)導(dǎo)航信號的波形特性將會影響導(dǎo)航信號質(zhì)量,而信號質(zhì)量優(yōu)劣則直接決定了整個GNSS的服務(wù)性能極限。傳統(tǒng)的波形畸變評估方法主要針對傳統(tǒng)相移鍵控(PSK)調(diào)制信號的波形幅度和寬度開展研究,而忽視了波形不對稱對跟蹤誤差和測距誤差帶來的影響。該文在國際民航組織(ICAO)所采用的傳統(tǒng)測距碼波形分析模型TMA/TMB/TMC基礎(chǔ)上,給出了適用于各種新型二進制偏置載波(BOC)調(diào)制的波形畸變分析擴展模型。接著提出能夠精細分析波形上升下降沿對稱特性(WRaFES)分析模型,并從時域波形、相關(guān)函數(shù)、S曲線過零點偏差3個方面,深入仿真分析了WRaFES模型的性能特點。最后,以北斗試驗衛(wèi)星M1-S B1Cd信號為例,給出了基于WRaFES模型及相關(guān)曲線特性的實測分析結(jié)果。研究表明:該方法能夠精確分析導(dǎo)航信號波形不對稱性及對用戶帶來的影響,研究成果可為新型衛(wèi)星導(dǎo)航信號評估提供一種新方法和新思路,同時還可為GNSS用戶接收機相關(guān)器間隔參數(shù)的合理選取提供建議和技術(shù)支撐。
-
關(guān)鍵詞:
- 全球衛(wèi)星導(dǎo)航系統(tǒng) /
- 衛(wèi)星導(dǎo)航信號 /
- 波形畸變 /
- 波形不對稱性
Abstract:The waveform characteristics of the navigation signals of Global Navigation Satellite Systems (GNSSs) will be of vital importance for signal quality, which plays an imperative and direct role in achieving high performance of GNSS services. These traditional methods for evaluating evil waveforms mainly deal with the amplitude and width of simple modulated signals such as Phase Shift Keying (PSK) signals. However, no research is done on the influences of waveform asymmetry on tracking errors and ranging errors. Based on the traditional thread models, such as Thread Model A (TMA), Thread Model B (TMB) and Thread Model C (TMC), adopted by International Civil Aviation Organization (ICAO), this paper provides a new extended general thread model suitable for new Binary Offset Carrier (BOC) modulated signals. Then a new evil waveform analysis method, Waveform Rising and Falling Edge Symmetry (WRaFES) Method, is proposed. The effects of WRaFES model are analyzed in detail in terms of time domain, correlation peak and S curve bias. Finally, by taking the B1Cd signal of the first modernized BeiDou navigation satellite System (BDS) experimental satellite named M1-S as an example, tested results of WRaFES model and correlation curves are shown in detail. Results show that the proposed methods could be able to analyze the asymmetry of signal deformation and its impact on ranging performance with high accuracy. The research brings about a new reference for new satellite navigation signal evaluation and signal system optimized design. In addition, it can provide valuable suggestions and technical supports for GNSS users to choose reasonable receivers’ correlator spacing.
-
表 1 WRaFES參數(shù)列表
$\Delta \Delta $測試參數(shù) 對稱性面積比參數(shù): $M1 = \frac{{({W_{ - 0.50}} - {W_{0.50}}) - ({W_{ - 0.47}} - {W_{0.47}})}}{{{W_0}}}$$M2 = \frac{{({W_{ - 0.53}} - {W_{0.53}}) - ({W_{ - 0.50}} - {W_{0.50}})}}{{{W_0}}}$ $M24 = 20 \times \lg \left[ {\displaystyle\frac{{\displaystyle\int_{t = - 0.60{T_{\rm c}}}^{t = - 0.40{T_{\rm c}}} {s(t){\rm dt}} }}{{\displaystyle\int_{t = 0.40{T_{\rm c}}}^{t = 0.60{T_{\rm c}}} {s(t){\rm dt}} }}} \right]$ 對稱性評價參數(shù): 非對稱性評價參數(shù): $M3 = \displaystyle\frac{{({W_{ - 0.40}} - {W_{0.40}})}}{{{W_0}}}$ $M4 = \displaystyle\frac{{({W_{ - 0.43}} - {W_{0.43}})}}{{{W_0}}}$
$M5 = \displaystyle\frac{{({W_{ - 0.47}} - {W_{0.47}})}}{{{W_0}}}$ $M6 = \displaystyle\frac{{({W_{ - 0.50}} - {W_{0.50}})}}{{{W_0}}}$
$M7 = \displaystyle\frac{{({W_{ - 0.53}} - {W_{0.53}})}}{{{W_0}}}$ $M8 = \displaystyle\frac{{({W_{ - 0.57}} - {W_{0.57}})}}{{{W_0}}}$ $M9 = \displaystyle\frac{{({W_{ - 0.60}} - {W_{0.60}})}}{{{W_0}}}$$M10 = \displaystyle\frac{{{W_{ - 0.40}}}}{{{W_0}}}$ $M11 = \displaystyle\frac{{{W_{0.40}}}}{{{W_0}}}$ $M12 = \displaystyle\frac{{{W_{ - 0.43}}}}{{{W_0}}}$ $M13 = \displaystyle\frac{{{W_{0.43}}}}{{{W_0}}}$ $M14 = \displaystyle\frac{{{W_{ - 0.47}}}}{{{W_0}}}$
$M15 = \displaystyle\frac{{{W_{0.47}}}}{{{W_0}}}$ $M16 = \displaystyle\frac{{{W_{-0.50}}}}{{{W_0}}}$ $M17 = \displaystyle\frac{{{W_{0.50}}}}{{{W_0}}}$ $M18 = \displaystyle\frac{{{W_{-0.53}}}}{{{W_0}}}$ $M19 = \displaystyle\frac{{{W_{0.53}}}}{{{W_0}}}$
$M20 = \displaystyle\frac{{{W_{-0.57}}}}{{{W_0}}}$ $M21 = \displaystyle\frac{{{W_{0.57}}}}{{{W_0}}}$ $M22 = \displaystyle\frac{{{W_{-0.60}}}}{{{W_0}}}$ $M23 = \displaystyle\frac{{{W_{0.60}}}}{{{W_0}}}$下載: 導(dǎo)出CSV
表 2 相關(guān)特性參數(shù)均值和方差
參數(shù) ${P_1}$ ${P_2}$ ${P_3}$ ${P_4}$ ${P_5}$ ${P_6}$ ${P_7}$ 均值 0 0 0 0 0 0 0.85 方差 $\frac{{0.6}}{{2T\,(C/{N_0})}}$ $\frac{{2.4}}{{2T\,(C/{N_0})}}$ $\frac{{0.6}}{{2T\,(C/{N_0})}}$ $\frac{{1.2}}{{2T\,(C/{N_0})}}$ $\frac{{2.0}}{{2T\,(C/{N_0})}}$ $\frac{{2.0}}{{2T\,(C/{N_0})}}$ $\frac{{2.775}}{{2T\,(C/{N_0})}}$ 參數(shù) ${P_8}$ ${P_9}$ ${P_{10}}$ ${P_{11}}$ ${P_{12}}$ ${P_{13}}$ ${P_{14}}$ 均值 0.85 0.70 0.70 –0.50 –0.50 0 0 方差 $\frac{{2.775}}{{2T\,(C/{N_0})}}$ $\frac{{0.51}}{{2T\,(C/{N_0})}}$ $\frac{{0.51}}{{2T\,(C/{N_0})}}$ $\frac{{0.75}}{{2T\,(C/{N_0})}}$ $\frac{{0.75}}{{2T\,(C/{N_0})}}$ $\frac{{1.0}}{{2T\,(C/{N_0})}}$ $\frac{{1.0}}{{2T\,(C/{N_0})}}$ 下載: 導(dǎo)出CSV
表 3 BDS M1-S B1CdWRaFES 參數(shù)統(tǒng)計結(jié)果
參數(shù) M1 M2 M5 M6 M7 M24 M14 M15 M16 M17 M18 M19 均值 0.0132 0.0149 0.0118 0.0014 0.0162 0.0091 0.5775 0.5893 0.0010 0.0003 0.5766 0.5928 標(biāo)準(zhǔn)差 0.1233 0.1396 0.1568 0.1292 0.1708 1.6188 0.0942 0.1359 0.0896 0.0942 0.1223 0.1571 參數(shù) M3 M4 M8 M9 M10 M11 M12 M13 M20 M21 M22 M23 均值 0.0008 0.0110 0.0339 0.0247 1.0391 1.0383 0.9369 0.9481 0.9321 0.9659 1.0425 1.0673 標(biāo)準(zhǔn)差 0.2455 0.1999 0.2571 0.3510 0.1557 0.2294 0.1089 0.1809 0.1941 0.2557 0.2759 0.3286 下載: 導(dǎo)出CSV
表 4 BDS M1-S B1Cd實測相關(guān)特性參數(shù)統(tǒng)計結(jié)果
參數(shù) P1 P2 P3 P4 P5 P6 P7 均值 0.0148 –0.0002 –0.0022 0.0114 0.0099 –0.0048 0.8663 標(biāo)準(zhǔn)差 0.0352 0.0488 0.0369 0.0369 0.0526 0.0745 0.0076 參數(shù) P8 P9 P10 P11 P12 P13 P14 均值 0.8698 0.7160 0.7060 –0.5013 –0.5099 0.0151 0.0211 標(biāo)準(zhǔn)差 0.0079 0.0121 0.0136 0.0593 0.0636 0.0576 0.0728 下載: 導(dǎo)出CSV
-
陳昌川, 周楊, 張?zhí)祢U. TDDM-BOC信號組合碼序列及信息序列盲估計[J]. 電子與信息學(xué)報, 2016, 38(11): 2760–2766. doi: 10.11999/JEIT160042CHEN Changchuan, ZHOU Yang, and ZHANG Tianqi. Blind estimation of the combination code sequence and information sequence for TDDM-BOC signal[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2760–2766. doi: 10.11999/JEIT160042 EDGAR C, CZOPEK F, and BARKER L B. A cooperative anomaly resolution on PRN-19[C]. Proceedings of 1999 Institute of Navigation GPS, Nashville, Tennessee, USA, 1999: 2269–2271. 賀成艷, 郭際, 盧曉春, 等. GNSS導(dǎo)航信號常見畸變產(chǎn)生機理及對測距性能影響分析[J]. 系統(tǒng)工程與電子技術(shù), 2015, 37(7): 1611–1620. doi: 10.3969/j.issn.1001-506X.2015.07.22HE Chengyan, GUO Ji, LU Xiaochun, et al. Generation mechanisms of GNSS navigation signal distortions and influence on ranging performance[J]. Systems Engineering and Electronics, 2015, 37(7): 1611–1620. doi: 10.3969/j.issn.1001-506X.2015.07.22 PHELTS R E. Multicorrelator techniques for robust mitigation of threats to GPS signal quality[D]. [Ph.D. dissertation], Stanford University, 2001: 1–345. FONTANELLA D, PAONNI M, and EISSFELLER B. A novel evil waveforms threat model for new generation GNSS signals: theoretical analysis and performance[C]. Proceedings of the 20105th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands, 2010: 1–8. doi: 10.1109/NAVITEC.2010.5708037. MISRA P and ENGE P. Global Positioning System: Signals, Measurements, and Performance[M]. 2nd ed. Lincoln, MA, Ganga-Jamuna Press, 2006: 1125–1134. JAHROMI A J, BROUMANDAN A, DANESHMAND S, et al. Galileo signal authenticity verification using signal quality monitoring methods[C]. Proceedings of 2016 International Conference on Localization and GNSS, Barcelona, Spain, 2016: 1–8. doi: 10.1109/ICL-GNSS.2016.7533684. 賀成艷. GNSS空間信號質(zhì)量評估方法研究及測距性能影響分析[D]. [博士論文], 中國科學(xué)院大學(xué), 2013: 1–205.HE Chengyan. Research on evaluation methods of GNSS signal quality and the influence of GNSS signal on ranging performance[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2013: 1–205. -