無(wú)線多跳網(wǎng)絡(luò)快速跨層資源優(yōu)化分配算法
doi: 10.11999/JEIT180581 cstr: 32379.14.JEIT180581
-
杭州電子科技大學(xué)通信工程學(xué)院 ??杭州 ??310018
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(61671192),浙江省公益計(jì)劃(LGG19F020014),中國(guó)博士后基金(2017M621796),浙江省自然科學(xué)基金(LY19F010011),中國(guó)移動(dòng)科研基金(MCM20-2017-0107),浙江省教育廳一般科研項(xiàng)目(Y201533647)
A Fast Convergent Cross-layer Resource Optimization Allocation Algorithm in Wireless Multi-hop Networks
-
College of Telecommunication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Funds: The National Natural Sicence Foundation of China (61671192), The Public Welfare Plan Project of Zhejiang Province (LGG19F020014), The Postdoctoral Science Foundation of China (2017M621796), The Natural Sicence Foundation of Zhejiang Province (LY19F010011), The Mobile Science Foundation of China (MCM20-2017-0107), The General Science Foundation of Zhejiang Educational Committee (Y201533647)
-
摘要: 針對(duì)背壓路由算法容易造成大量隊(duì)列積壓和收斂速度慢的缺陷,該文研究了無(wú)線多跳網(wǎng)絡(luò)中節(jié)點(diǎn)功率受限情況下的聯(lián)合擁塞控制、路由和功率分配的跨層優(yōu)化問(wèn)題。以最大化網(wǎng)絡(luò)效用為目標(biāo),以流平衡條件、功率等為約束條件建模,基于牛頓法提出了一種具有超線性收斂性能的算法,并運(yùn)用矩陣分裂技術(shù)使該算法能夠分布式實(shí)施。仿真結(jié)果表明,該算法在實(shí)現(xiàn)網(wǎng)絡(luò)效用最大化的同時(shí),能夠有效提高網(wǎng)絡(luò)中的能量效用,且能將網(wǎng)絡(luò)中的隊(duì)列長(zhǎng)度穩(wěn)定在一個(gè)較低水平,降低包傳輸延時(shí)。
-
關(guān)鍵詞:
- 無(wú)線多跳網(wǎng)絡(luò) /
- 路由選擇 /
- 隊(duì)列穩(wěn)定 /
- 擁塞控制 /
- 功率分配
Abstract: In order to improve the performance of the large queue backlogs and low convergence rate in back pressure routing algorithm, the cross-layer optimization of joint congestion control, multi-path routing and power allocation in wireless multi-hop networks is investigated. The system is modeled as a network utility maximization problem under the constraints of flow balancing condition and power. Based on the Newton’s method, the problem is solved and an algorithm with superlinear convergence speed is proposed. With matrix splitting technology, the algorithm can be implemented distributedly further. The simulation results show that the algorithm can effectively increase the energy utility while achieving the maximum network utility, and can keep the queue length at a very low level to decrease the packet transmission delay.-
Key words:
- Wireless multi-hop networks /
- Routing /
- Queue stability /
- Congestion control /
- Power allocation
-
馮維, 馮穗力, 丁躍華, 等. 無(wú)線多跳網(wǎng)絡(luò)下基于過(guò)時(shí)信道狀態(tài)信息的跨層資源分配[J]. 電子與信息學(xué)報(bào), 2014, 36(11): 2750–2755. doi: 10.3724/SP.J.1146.2013.00546FENG Wei, FENG Suili, DING Yuehua, et al. Cross-layer resource allocation with outdated channel state Information in wireless multi-hop networks[J]. Journal of Electronics &Information Technology, 2014, 36(11): 2750–2755. doi: 10.3724/SP.J.1146.2013.00546 ERYILMAZ A and SRIKANT R. Joint congestion control, routing, and MAC for stability and fairness in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1514–1524. doi: 10.1109/jsac.2006.879361 石雷, 韓江洪, 石怡, 等. 無(wú)線多跳網(wǎng)絡(luò)下基于干擾管理的高容量跨層優(yōu)化策略[J]. 通信學(xué)報(bào), 2014, 35(12): 89–97. doi: 10.3969/j.issn.1000-436x.2014.12.011SHI Lei, HAN Jiang hong, SHI Yi, et al. High capacity cross layer optimization strategy for multi-hop wireless network with interference management[J]. Journal on Communications, 2014, 35(12): 89–97. doi: 10.3969/j.issn.1000-436x.2014.12.011 ALHOSAINY A and KUNZ T. Joint Optimal Congestion, Multipath Routing, and Contention Control for Wireless Ad-hoc Networks[J]. EEE Communications Letters, 2017, PP(99): 1–1. doi: 10.1109/lcomm.2017.2739139 MALEKSHAN K R, ZHUANG W. Joint Scheduling and Transmission Power Control in Wireless Ad Hoc Networks[J]. IEEE Transactions on Wireless Communications, 2017, PP(99): 1–1. doi: 10.1109/wcsp.2009.5371646 WEI E, OZDAGLAR A, and JADBABAIE A. A distributed newton method for network utility maximization[C]. 49th IEEE Conference on Decision and Control, Atlanta, USA, 2010: 1816–1821. LIU Jia and SHERALI H D. A distributed Newton’s method for joint multi-hop routing and flow control: Theory and algorithm[C]. 2012 Proceedings IEEE INFOCOM, Orlando, USA, 2012: 2489–2497. LIU Jia, SHROFF N B, XIA C, et al. Joint congestion control and routing optimization: an efficient second-order distributed approach[J]. IEEE/ACM Transactions on Networking, 2016, 24(3): 1404–1420. doi: 10.1109/TNET.2015.2415734 YU Hao and NEELY M J. A new backpressure algorithm for joint rate control and routing with vanishing utility optimality gaps and finite queue lengths[C]. IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Orlando, USA, 2017: 1–9. HAI L, GAO Q, WANG J, et al. Delay-optimal back-pressure routing algorithm for multi-hop wireless networks[J]. IEEE Transactions on Vehicular Technology, 2017, PP(99): 1–1. doi: 10.1109/TVT.2017.2770183 JU H, LIANG B, LI J, et al. Dynamic power allocation for throughput utility maximization in interference-limited networks[J]. IEEE Wireless Communications Letters, 2013, 2(1): 22–25. doi: 10.1109/wcl.2012.100912.120512 NEELY M J. Super-fast delay tradeoffs for utility optimal fair scheduling in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(8): 1489–1501. doi: 10.1109/jsac.2006.879357 HIRIART-URRUTY J B and LEMARéCHAL C. Convex analysis and minimization algorithms[J]. Grundlehren Der Mathematischen Wissenschaften, 1993, 1185(1): 150–159. doi: 10.1007/978-3-662-06409-2_2 WO?NICKI Z I. Matrix splitting principles[J]. International Journal of Mathematics and Mathematical Sciences, 2001, 28(5): 251–284. doi: 10.1155/s0161171201007062 NESTEROV I E and NEMIROVSKI? A S. Interior point polynomial algorithms in convex programming, SAM[J]. Studies in Applied Mathematics Philadelphia Siam, 1994, 6(4): 344–345. doi: 10.1137/1.9781611970791 -