基于改進沖突度量的多證據直接融合算法
doi: 10.11999/JEIT180578 cstr: 32379.14.JEIT180578
-
1.
魯東大學信息與電氣工程學院 ??煙臺 ??264025
-
2.
華東師范大學外國語學院 ??上海 ??200241
A Direct Fusion Algorithm for Multiple Pieces of Evidence Based on Improved Conflict Measure
-
1.
School of Information and Electrical Engineering, Ludong University, Yantai 264039, China
-
2.
School of Foreign Languages, East China Normal University, Shanghai 200241, China
-
摘要:
針對Jousselme證據距離函數不能較好描述證據局部沖突和不能對高沖突證據進行準確沖突度量的不足,該文首先提出改進的Jousselme證據距離函數,該函數基于能夠較好描述證據之間局部沖突情況的非重合度對Jousselme證據距離函數進行改進,使其沖突度量結果隨非重合度取值及其取值范圍的變化按適當比例進行變化;其次,基于沖突系數和新改進Jousselme證據距離函數共同構建改進的融合沖突度量函數。在此基礎上,對焦元權系數計算式進行改進,并依此對局部多維沖突信息進行按比例分配。理論及應用分析結果表明,新算法是一種適用性廣泛且抗干擾性能好的證據融合算法。
-
關鍵詞:
- Dempster證據組合規(guī)則 /
- 沖突度量 /
- 證據距離 /
- 非重合度
Abstract:In the light of the disadvantages that Jousselme’s evidential distance function can not describe the local conflicting information of evidence well and can not measure the conflict of high conflicting evidence accurately, an improved Jousselme’s evidential distance function is proposed. In the new function, Jousselme’s evidence distance function is improved by using the non-coincidence degree, which can better describe the local conflict of evidence, so that the conflict measure result of evidence varies proportionally with the value of the non-coincidence degree and the scope of its change. Secondly, an improved fusion conflict measure function is constructed based on the conflict coefficient and the new improved Jousselme’s evidential distance function. On this basis, the weight coefficient formula of focal element is improved, and the local multi-dimensional conflicting information is assigned proportionately. Theoretical and application analysis results show that the new algorithm is a kind of evidence fusion algorithm with wide applicability and good anti-jamming performance.
-
表 1 不同參數對情況1中證據的沖突度量結果
沖突度量參數 ${m_1}$與${m_1}$ ${m_2}$與${m_2}$ ${m_1}$與${m_2}$ ${d_J}$ 0 0 0.4500 $k$ 0.4600 0.5050 0.6850 ${n_c}$ 0 0 0.4500 ${d_{{\rm{PJ}}}}$ 0 0 0.6255 ${d_{{\rm{NIJ}}}}(\gamma {\rm{ = 4)}}$ 0 0 0.7618 ${d^f}(\gamma {\rm{ = 4)}}$ 0.2652 0.2964 0.7241 下載: 導出CSV
表 2 不同參數對情況2中證據的沖突度量結果
沖突度量參數 ${m_1}$與${m_1}$ ${m_2}$與${m_2}$ ${m_1}$與${m_2}$ ${d_J}$ 0 0 0.8352 $k$ 0 0.4050 0.9000 ${n_c}$ 0 0 0.9000 ${d_{{\rm{PJ}}}}$ 0 0 0.9352 ${d_{{\rm{NIJ}}}}(\gamma {\rm{ = 8)}}$ 0 0 0.9886 ${d^f}(\gamma {\rm{ = 8)}}$ 0 0.2287 0.9662 下載: 導出CSV
-
SHAFER G. A mathematical theory of evidence turns 40[J]. International Journal of Approximate Reasoning, 2016, 79: 7–25. doi: 10.1016/j.ijar.2016.07.009 HAN Deqiang, DEZERT J, and YANG Yi. Belief interval-based distance measures in the theory of belief functions[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2016, 99: 1–18. doi: 10.1109/TSMC.2016.2628879 韓德強, 楊藝, 韓崇昭. DS證據理論研究進展及相關問題探討[J]. 控制與決策, 2014, 29(1): 1–11. doi: 10.13195/j.kzyjc.2013.0517HAN Deqiang, YANG Yi, and HAN Chongzhao. Advances in DS evidence theory and related discussions[J]. Control and Decision, 2014, 29(1): 1–11. doi: 10.13195/j.kzyjc.2013.0517 DESTERCKE S and BURGER T. Toward an axiomatic definition of conflict between belief functions[J]. IEEE Transactions on Cybernetics, 2013, 43(2): 585–596. doi: 10.1109/TSMCB.2012.2212703 ZADEH L A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination[J]. AI magazine, 1986, 7(2): 85–90. doi: 10.1142/9789814261302-0033 SONG Yafei, WANG Xiaodan, LEI Lei, et al. Credibility decay model in temporal evidence combination[J]. Information Processing Letters, 2015, 115(2): 248–252. doi: 10.3969/j.issn.1001-506X.2015.07.04 BI Wenhao, ZHANG An, and YUAN Yuan. Combination method of conflict evidences based on evidence similarity[J]. Journal of Systems Engineering and Electronics, 2017, 28(3): 503–513. doi: 10.21629/JSEE.2017.03.10 QIAN Jin, GUO Xingfeng, and DENG Yong. A novel method for combining conflicting evidences based on information entropy[J]. Applied Intelligence, 2017, 46(4): 1–13. doi: 10.1007/s10489-016-0875-y 包甜甜, 謝新連, 魏照坤. 新的證據沖突度量算法[J]. 控制理論與應用, 2017, 34(1): 41–48. doi: 10.7641/CTA.2017.60275BAO Tiantian, XIE Xinlian, and WEI Zhaokun. Novel approach for measuring the conflict between evidence[J]. Control Theory &Applications, 2017, 34(1): 41–48. doi: 10.7641/CTA.2017.60275 鄧勇, 施文康, 朱振福. 一種有效處理沖突證據的組合方法[J]. 紅外與毫米波學報, 2004, 23(1): 27–32. doi: 10.3321/j.issn:1001-9014.2004.01.006DENG Yong, SHI Wenkang, and ZHU Zhenfu. Efficient combination approach of conflict evidence[J]. Journal of Infrared and Millimeter Wave, 2004, 23(1): 27–32. doi: 10.3321/j.issn:1001-9014.2004.01.006 宋亞飛, 王曉丹, 雷蕾, 等. 基于信任度和虛假度的證據組合方法[J]. 通信學報, 2015, 36(5): 98–103. doi: 10.11959/j.issn.1000-436x.2015104SONG Yafei, WANG Xiaodan, LEI Lei, et al. Evidence combination based on the degree of credibility and falsity[J]. Journal on Communications, 2015, 36(5): 98–103. doi: 10.11959/j.issn.1000-436x.2015104 LIU Zhigang, HAN Zhiwei, ZHANG Yang, et al. Multiwavalet packet entropy and its application in transmission line fault recognition and classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(11): 2043–2052. doi: 10.1109/TNNLS.2014.2303086 DENG Yong. Generalized evidence theory[J]. Applied Intelligence, 2015, 43(3): 530–543. doi: 10.1007/s10489-015-0661-2 郭強, 何友, 李新德. 一種快速DSmT-DS近似推理融合方法[J]. 電子與信息學報, 2015, 37(9): 2040–2046. doi: 10.11999/JEIT150086GUO Qiang, HE You, and LI Xinde. Fast DSmT-DS approximate reasoning method[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2040–2046. doi: 10.11999/JEIT150086 周莉, 郭偉震, 曹珊珊. 改進的局部沖突信息再分配算法[J]. 光電子激光, 2018, 29(4): 396–404. doi: 10.16136/j.joel.2018.04.0205ZHOU Li, GUO Weizhen, and CAO Shanshan. An improved local conflict information redistribution algorithm[J]. Journal of Optoelectronics Laser, 2018, 29(4): 396–404. doi: 10.16136/j.joel.2018.04.0205 曹潔, 郭雷雷. 一種基于局部沖突分配的證據組合規(guī)則[J]. 計算機應用研究, 2013, 30(7): 2033–2035. doi: 10.3969/j.issn.1001-3695.2013.07.029CAO Jie and GUO Leilei. Evidence combination rule based on local conflict distribution strategy[J]. Application Research of Computers, 2013, 30(7): 2033–2035. doi: 10.3969/j.issn.1001-3695.2013.07.029 彭穎, 胡增輝, 沈懷榮. 一種修正證據距離[J]. 電子與信息學報, 2013, 35(7): 1624–1629. doi: 10.3724/SP.J.1146.2012.01680PENG Ying, HU Zenghui, and SHEN Huairong. A modified distance of evidence[J]. Journal of Electronics &Information Technology, 2013, 35(7): 1624–1629. doi: 10.3724/SP.J.1146.2012.01680 毛藝帆, 張多林, 王路. 基于重合度的證據沖突度量方法[J]. 控制與決策, 2017, 32(2): 293–298. doi: 10.13195/j.kzyjc.2016.1394MAO Yifan, ZHANG Duolin, and WANG Lu. Measurement of evidence conflict based on overlapping degree[J]. Control and Decision, 2017, 32(2): 293–298. doi: 10.13195/j.kzyjc.2016.1394 湯潮, 蔣雯, 陳運東, 等. 新不確定度量下的沖突證據融[J]. 系統(tǒng)工程理論與實踐, 2015, 35(9): 2394–2400. doi: 10.12011/1000-6788(2015)9-2394TANG Chao, JIANG Wen, CHEN Yundong, et al. Conflicting evidence combination based on a new measure method of uncertainty[J]. Systems Engineering -Theory &Practice, 2015, 35(9): 2394–2400. doi: 10.12011/1000-6788(2015)9-2394 BURGER T. Geometric views on conflicting mass functions: From distances to angles[J]. International Journal of Approximate Reasoning, 2016, 70: 36–50. doi: 10.1016/j.ijar.2015.12.006 -