分?jǐn)?shù)階傅里葉和壓縮感知自適應(yīng)抗頻譜彌散干擾
doi: 10.11999/JEIT180569 cstr: 32379.14.JEIT180569
-
1.
陸軍工程大學(xué) ??石家莊 ??050003
-
2.
中國人民解放軍32181部隊 ??西安 ??710032
Fractional Fourier Transform and Compressed Sensing Adaptive Countering Smeared Spectrum Jamming
-
1.
Army Engineering University, Shijiazhuang 050003, China
-
2.
32181 of PLA, Xi’an 710032, China
-
摘要:
頻譜彌散(SMSP)干擾與線性調(diào)頻雷達(dá)信號之間存在大量的時頻域耦合,干擾效能突出。該文提出一種信息域的抗SMSP干擾的信號處理算法,根據(jù)SMSP干擾信號的形式與特點,通過自適應(yīng)改變壓縮感知的干擾基字典,同時匹配雷達(dá)信號與干擾信號的調(diào)頻率,構(gòu)建壓縮感知求解模型并基于凸優(yōu)化算法完成信號重構(gòu),最終實現(xiàn)干擾信號的識別及雷達(dá)信號的提取。該算法中冗余字典的構(gòu)造采用了Pei型分?jǐn)?shù)階傅里葉快速分解方法,不需要反復(fù)對信號進(jìn)行時頻域解耦,并且迭代次數(shù)較少,運算效率較高。
-
關(guān)鍵詞:
- 信號處理 /
- 頻譜彌散 /
- 分?jǐn)?shù)階傅里葉變換 /
- 壓縮感知 /
- 形態(tài)理論
Abstract:SMeared SPectrum (SMSP) jamming has lots of coupling in time and frequency domain with Linear Frequency Modulated (LFM) radar signals, which has good jamming performance. This paper proposes a signal processing method for countering SMSP jamming in information domain. According to the formulation and characteristics of SMSP signal, the jamming dictionary is changed automatically, the frequency modulation rate of LFM and SMSP signal is matcheal at the same time, the compressed sampling model is consructed and reconstruction of signal is carried out based on convex optimization. Finally, the recognition of jamming signal and extraction of radar signal are achieved. Pei type fractional Fourier decomposition method is used in construction of redundant dictionary. Modulation and demodulation between time and frequency domain are avoided in this method, which leads to improvement in fewer iteration times and higher arithmetic speed.
-
表 1 恢復(fù)結(jié)果的均方誤差統(tǒng)計值(×10–14)
調(diào)頻倍數(shù) 切片數(shù) 2 4 6 8 3 1.5126 1.4837 1.5018 1.5525 5 1.5246 1.5539 1.5187 1.4641 7 1.4727 1.5415 1.5443 1.5563 9 1.4811 1.5656 1.5707 1.5487 下載: 導(dǎo)出CSV
-
SPARROW M J and CIKALO J. ECM techniques to counter pulse compression radar[P]. United States Patent, 7081846.2006. 那洪祥. 基于DRFM的高分辨雷達(dá)擴展目標(biāo)回波仿真技術(shù)[J]. 海軍航空工程學(xué)院學(xué)報, 2017, 32(4): 347–351. doi: 10.7682/j.issn.1673-1522.2017.04.002NA Hongxiang. Extended target echo simulation of high-resolution radar based on DRFM[J]. Journal of Naval Aeronautical and Astronautical University, 2017, 32(4): 347–351. doi: 10.7682/j.issn.1673-1522.2017.04.002 黃思源, 劉東升. 基于DRFM的移頻旁瓣干擾技術(shù)研究[J]. 現(xiàn)代防御技術(shù), 2017, 45(6): 25–32. doi: 10.3969/j.issn.1009-086x.2017.06.005HUANG Siyuan and LIU Dongsheng. Technology of frequency shift sidelobe jamming based on DRFM[J]. Modern Defence Technology, 2017, 45(6): 25–32. doi: 10.3969/j.issn.1009-086x.2017.06.005 唐斌, 趙源, 蔡天一, 等. 雷達(dá)抗有源干擾技術(shù)現(xiàn)狀與展望[J]. 數(shù)據(jù)采集與處理, 2016, 31(4): 623–639. doi: 10.16337/j.1004-9037.2016.04.001TANG Bin, ZHAO Yuan, CAI Tianyi, et al. Advances and perspectives in radar ECCM techniques of active jamming[J]. Journal of Data Acquisition and Processing, 2016, 31(4): 623–639. doi: 10.16337/j.1004-9037.2016.04.001 劉振, 隋金坪, 魏璽章, 等. 雷達(dá)有源干擾識別技術(shù)研究現(xiàn)狀與發(fā)展趨勢[J]. 信號處理, 2017, 33(12): 1593–1601. doi: 10.16798/j.issn.1003-0530.2017.12.010LIU Zhen, SUI Jinping, WEI Xizhang, et al. The development and prospect of radar active jamming recognition[J]. Journal of Signal Processing, 2017, 33(12): 1593–1601. doi: 10.16798/j.issn.1003-0530.2017.12.010 孫閩紅, 唐斌. 距離-速度同步拖引欺騙干擾的頻譜特征分析[J]. 系統(tǒng)工程與電子技術(shù), 2009, 31(1): 83–85. doi: 10.3321/j.issn:1001-506X.2009.01.021SUN Minhong and TANG Bin. Analysis of the frequency spectrum of a simultaneous range-gate-pull-off and velocity gate-pull-off jamming signal[J]. Systems Engineering and Electronics, 2009, 31(1): 83–85. doi: 10.3321/j.issn:1001-506X.2009.01.021 GRECO M, GINI F, and FARINA A. Combined effect of phase and RGPO delay quantization on jamming signal spectrum[C]. 2005 IEEE International Radar Conference, Arlington, USA, 2005: 37–42. 劉興華, 羅景青, 王文濤. 相位量化DRFM欺騙干擾的自適應(yīng)檢測[J]. 數(shù)據(jù)采集與處理, 2015, 30(6): 1302–1309. doi: 10.16337/j.1004-9037.2015.06.020LIU Xinghua, LUO Jingqing, and WANG Wentao. Adaptive detection of phase quantized DRFM deception jamming[J]. Journal of Data Acquisition and Processing, 2015, 30(6): 1302–1309. doi: 10.16337/j.1004-9037.2015.06.020 田曉. 雷達(dá)有源欺騙干擾綜合感知方法研究[D]. [博士論文], 電子科技大學(xué), 2013.TIAN Xiao. Research on the integrated perception method of radar active deception[D].[Ph.D. dissertation], University of Electronic Science and Technology of China, 2013. 楊少奇, 田波, 李欣, 等. 基于時頻圖像特征提取的LFM雷達(dá)有源欺騙干擾識別[J]. 空軍工程大學(xué)學(xué)報?自然科學(xué)版, 2016, 17(1): 56–59. doi: 10.3969/j.issn.1009-3516.2016.01.011YANG Shaoqi, TIAN Bo, LI Xin, et al. A recognition method of LFM radar active deception jamming based on SPWVD figure[J]. Journal of Air Force Engineering University, 2016, 17(1): 56–59. doi: 10.3969/j.issn.1009-3516.2016.01.011 周利華. 雷達(dá)干擾信號分析技術(shù)研究[D]. [博士論文], 西安電子科技大學(xué), 2014.ZHOU Lihua. A study on multi-scale feature-level identification of active deception jamming[D]. [Ph.D. dissertation], Xidian University, 2014. NOURI M, MIVEHCHY M, and AGHDAM S. Adaptive time-frequency kernel local fisher discriminant analysis to distinguish range deception jamming[C]. International Conference on Computing, Communication and Networking Technologies, Denton, USA, 2016: 1–5. ZHANG Gexiang and LI Xu. A new recognition system for radar emitter signals[J]. Kybernetes, 2013, 41(9): 1351–1360. doi: 10.1108/03684921211275405 SWAMI A and SADLER B. Hierarchical digital modulation classification using cumulants[J]. IEEE Transactions on Communications, 2000, 48(3): 416–429. doi: 10.1109/26.837045 LI Jianxun, QI Shen, and HAI Yan. Signal feature analysis and experimental verification of radar deception jamming[C]. IEEE CIE International Conference on Radar, Chengdu, China, 2012: 230–233. 盧云龍, 李明, 曹潤清, 等. 聯(lián)合時頻分布和壓縮感知對抗頻譜彌散干擾[J]. 電子與信息學(xué)報, 2016, 38(12): 3275–3281. doi: 10.11999/JEIT160919LU Yunlong, LI Ming, CAO Runqing, et al. Jointing time-frequency distribution and compressed sensing for countering smeared spectrum jamming[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3275–3281. doi: 10.11999/JEIT160919 STARCK J, ELAD M, and DONOHO D. Redundant multiscale transforms and their application for morphological component separation[J]. Advances in Imaging & Electron Physics, 2004, 132(4): 287–348. doi: 10.1016/S1076-5670(04)32006-9 STARCK J, ELAD M, and DONOHO D. Image decomposition via the combination of sparse representations and a variational approach[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1570–1582. doi: 10.1109/TIP.2005.852206 BOBIN J, STARCK J, FADILI J, et al. Morphological component analysis: an adaptive thresholding strategy[J]. IEEE Transactions on Image Processing, 2007, 16(11): 2675–2681. doi: 10.1109/TIP.2007.907073 李映, 張艷寧, 許星. 基于信號稀疏表示的形態(tài)成分分析: 進(jìn)展和展望[J]. 電子學(xué)報, 2009, 37(1): 146–152. doi: 10.3321/j.issn:0372-2112.2009.01.026LI Ying, ZHANG Yanning, and XU Xing. Advances and perspective on morphological component analysis based on sparse representation[J]. Acta Electronica Sinica, 2009, 37(1): 146–152. doi: 10.3321/j.issn:0372-2112.2009.01.026 付蓉, 李潔, 高新波. 基于形態(tài)學(xué)成分分析的靜態(tài)極光圖像分類算法[J]. 光子學(xué)報, 2010, 39(6): 1034–1039. doi: 10.3788/gzxb20103906.1034FU Rong, LI Jie, and GAO Xinbo. Static aurora images classification based on morphological component analysis[J]. Acta Photonica Sinica, 2010, 39(6): 1034–1039. doi: 10.3788/gzxb20103906.1034 陶然, 鄧兵, 王越. 分?jǐn)?shù)階傅里葉變換及其應(yīng)用[M]. 北京: 清華大學(xué)出版社, 2009: 150–152.TAO Ran, DENG Bing, and WANG Yue. Fractional Fourier Transform and Its Applications[M]. Beijing: Tsinghua University Press, 2009: 150–152. -