一種基于空頻結(jié)構(gòu)與空時(shí)結(jié)構(gòu)權(quán)值轉(zhuǎn)換的精確寬帶波束賦形算法
doi: 10.11999/JEIT180545 cstr: 32379.14.JEIT180545
-
電子科技大學(xué)信息與通信工程學(xué)院 ??成都 ??611731
An Accurate Wideband Beampattern Synthesis Method Based on the Space-frequency Structure and the Space-time Structure Conversion
-
School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
-
摘要:
該文提出一種空時(shí)結(jié)構(gòu)下的精確寬帶波束賦形算法。在空頻結(jié)構(gòu)下,對各子帶權(quán)值進(jìn)行波束賦形優(yōu)化。根據(jù)權(quán)值在滿足共軛對稱條件下,陣列幅度響應(yīng)可以轉(zhuǎn)換為線性函數(shù)這一原理,將波束賦形轉(zhuǎn)換為凸優(yōu)化問題。利用內(nèi)點(diǎn)法得到最優(yōu)權(quán)值后,通過空頻結(jié)構(gòu)與空時(shí)結(jié)構(gòu)之間的權(quán)值轉(zhuǎn)換關(guān)系,得到空時(shí)結(jié)構(gòu)下的波束權(quán)值。該算法能夠?qū)拵Рㄊ鴪D進(jìn)行精確地賦形,同時(shí)保證在期望方向上陣列響應(yīng)具有線性相位特性。仿真結(jié)果驗(yàn)證了算法的有效性。
-
關(guān)鍵詞:
- 寬帶波束賦形 /
- 空頻空時(shí)結(jié)構(gòu)轉(zhuǎn)換 /
- 線性相位 /
- 共軛對稱權(quán)值 /
- 2階錐規(guī)劃
Abstract:An accurate wideband beampattern synthesis method based on the space-time structure is proposed. Making use of the property that the magnitude response can be translated into linear function under the condition of conjugate symmetric weights, the beampattern synthesis problem is transformed into the convex optimization problem. The weights of space-time structure can be obtained by utilizing the principle of relationship between the two structures, after the weights of space-frequency structure is calculated by the interior point method. The proposed method can realize the wideband beampattern synthesis accurately, meanwhile ensuring the linear phase characteristic of the array response. Simulation results demonstrate the effectiveness of the proposed method.
-
表 1 3種方法的計(jì)算量比較
方法 迭代次數(shù) 每次迭代的運(yùn)算量 式(13) $O\left(\sqrt {{K_4}(2{K_1} + {K_2} + {K_3}) + 2} \right)$ $O\left\{ (MN)^2[{K_4}(6{K_1} + 3{K_2}{+ 3}{K_3}) + 2{K_4} + 1]\right\} $ 式(14) $O\left(\sqrt {2{K_1} + {K_4}({K_2} + {K_3}) + 2} \right)$ $O\left\{ {(MN)^2}[6{K_1} + 3{K_4}({K_2} + {K_3}) + MN{\rm{ + }}3]\right\} $ 式(21) $O\left(\sqrt {2N} \right)$ $O\left\{ {(M/2)^2}[N(4{K_1} + 2{K_2} + 2{K_3}) + MN + 3N]\right\} $ 下載: 導(dǎo)出CSV
-
KNIGHT W C, PRIDHAM R G, and KAY S M. Digital signal processing for sonar[J]. Proceedings of the IEEE, 1981, 69(11): 1451–1506. doi: 10.1109/PROC.1981.12186 GINI F, FARINA A, and GERCO M. Selected list of references on radar signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 329–359. doi: 10.1109/7.913696 GIANNAKIS G B. Highlights of signal processing for communications[J]. IEEE Signal Processing Magazine, 1999, 16(2): 14–50. doi: 10.1109/MSP.1999.752038 ELLINGSON S W and HAMPSON G A. Aubspace-tracking approach to interference nulling for phased array-based radio telescopes[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(1): 25–30. doi: 10.1109/8.992558 KARAMAN M, ATALAR A, and KOYMEN H. VLSI circuits for adaptive digital beamforming in ultrasound imaging[J]. IEEE Transactions on Medical Imaging, 1993, 12(4): 711–720. doi: 10.1109/42.251122 FROST O L. An algorithm for linearly constrained adaptive array processing[J]. Proceedings of the IEEE, 1972, 60(8): 926–935. doi: 10.1109/PROC.1972.8817 DENTINO M, MCCOOL J, and WIDROW B. Adaptive filtering in the frequency domain[J]. Proceedings of the IEEE, 1978, 66(12): 1658–1659. doi: 10.1109/PROC.1978.11177 HAMID U, QAMAR R A, and WAQAS K. Performance compariason of time-domain and frequency-domain beamforming techniques for sensor array processing[C]. Proceedings of 2014 11th International Bhurban Conference on Applied Science & Technology, Islamabad, Pakistan, 2014: 379–385. doi: 10.1109/IBCAST.2014.6778172. GODARA L C and JAHROMI M R S. Limitations and capabilities of frequency domain broadband constrained beamforming schemes[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2386–2395. doi: 10.1109/78.782182 COMPTON R T. The relationship between tapped delay-line and FFT processing in adaptive arrays[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(1): 15–26. doi: 10.1109/8.1070 GODARA L C. Application of the fast fourier transform to broadband beamforming[J]. The Journal of the Acoustical Society of America, 1995, 98(1): 230–240. doi: 10.1121/1.413765 王力, 何丙發(fā), 孫慶鋒. 一種陣列天線快速波束賦形方法[J]. 現(xiàn)代雷達(dá), 2016, 38(8): 70–74. doi: 10.16592/j.cnki.1004-7859.2016.08.016WANG Li, HE Bingfa, and SUN Qingfeng. Synthesis of the shaped-beam array antennas using a fast algorithm[J]. Modern Radar, 2016, 38(8): 70–74. doi: 10.16592/j.cnki.1004-7859.2016.08.016 鄭占旗, 閻躍鵬, 張立軍, 等. 增加副瓣抑制機(jī)制的陣列天線波束賦形遺傳算法研究[J]. 電子與信息學(xué)報(bào), 2017, 39(3): 690–696. doi: 10.11999/JEIT160466ZHENG Zhanqi, YAN Yuepeng, ZHANG Lijun, et al. Research on genetic algorithm of antenna arrays beam shaping with side lobe suppression[J]. Journal of Electronics &Information Technology, 2017, 39(3): 690–696. doi: 10.11999/JEIT160466 LIANG Junli, FAN Xuhui, FAN Wen, et al. Phase-only pattern synthesis for linear antenna arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 3232–3235. doi: 10.1109/LAWP.2017.2771380 陳俊杰, 金榮洪, 耿軍平. 一種基于牛頓下山法的寬帶陣列方向圖綜合算法[J]. 上海交通大學(xué)學(xué)報(bào), 2007, 41(8): 1366–1369. doi: 10.3321/j.issn:1006-2467.2007.08.033CHEN Junjie, JIN Ronghong, and GENG Junping. A wideband array beam pattern synthesis algorithm based on newton downhill method[J]. Journal of Shanghai Jiaotong University, 2007, 41(8): 1366–1369. doi: 10.3321/j.issn:1006-2467.2007.08.033 陳明建, 羅景青. 基于疊加變加權(quán)最小二乘的寬帶波束賦形方法[J]. 宇航學(xué)報(bào), 2012, 33(6): 796–801. doi: 10.3873/j.issn.1000-1328.2012.06.016CHEN Mingjian and LUO Jingqing. A method for broadband shoped beam based on iterative variably-weighted least squares[J]. Journal of Astronautics, 2012, 33(6): 796–801. doi: 10.3873/j.issn.1000-1328.2012.06.016 賈深惠, 趙擁軍, 陳沛, 等. 基于二階錐規(guī)劃的共形陣列寬帶方向圖綜合[J]. 信息工程大學(xué)學(xué)報(bào), 2016, 17(4): 437–442. doi: 10.3969/j.issn.1671-0673.2016.04.011JIA Shenhui, ZHAO Yongjun, CHEN Pei, et al. Conformal array beamforming for broadband signals based on second order cone programming[J]. Journal of Information Engineering University, 2016, 17(4): 437–442. doi: 10.3969/j.issn.1671-0673.2016.04.011 劉子龍, 丁淑娟, 孫廣俊, 等. 基于二階錐規(guī)劃的寬帶波束形成器設(shè)計(jì)[J]. 計(jì)算機(jī)工程與應(yīng)用, 2013, 49(5): 195–199. doi: 10.3778/j.issn.1002-8331.1107-0521LIU Zilong, DING Shujuan, SUN Guangjun, et al. Design of broadband beamformer based on second-order cone programming[J]. Computer Engineering and Application, 2013, 49(5): 195–199. doi: 10.3778/j.issn.1002-8331.1107-0521 YAN Shefeng, MA Yuanliang, and HOU Chaohuan. Optimal array pattern synthesis for broadband arrays[J]. Journal of the Acoustical of America, 2007, 122(5): 2686–2696. doi: 10.1121/1.2785037 DUAN Huiping, NG B P, SEE C M S, et al. Application of the SRV constraint in broadband pattern synthesis[J]. Signal Processing, 2008, 88(4): 1035–1045. doi: 10.1016/j.sigpro.2007.11.001 ZHANG Tongtong and SER W. Robust beampattern synthesis for antenna arrays with mutual coupling effect[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(8): 2889–2895. doi: 10.1109/TAP.2011.2152329 BOYD S and VANDENBERGHE L. Convex Optimization[M]. New York, USA: Cambridge University Press, 2004: 127–189. 虞泓波, 馮大政, 解虎. 相位響應(yīng)固定幅度響應(yīng)約束的穩(wěn)健波束形成方法[J]. 電子與信息學(xué)報(bào), 2015, 37(7): 1688–1694. doi: 10.11999/JEIT141513YU Hongbo, FENG Dazheng, and XIE Hu. Robust beamforming with phase response fixed and magnitude response constraint[J]. Journal of Electronics &Information Technology, 2015, 37(7): 1688–1694. doi: 10.11999/JEIT141513 LIAO Bin, TSUI K M, and CHAN Shingchow. Robust beamforming with magnitude response constraints using iterative second-order cone programming[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(9): 3477–3482. doi: 10.1109/TAP.2011.2161445 XU Dingjie, HE Rui, and SHEN Feng. Robust beamforming with magnitude response constraints and conjugate symmetric constraint[J]. IEEE Communication Letters, 2013, 17(3): 561–564. doi: 10.1109/LCOMM.2013.011513.122688 ZHU Liangyu, SER W, ER M H, et al. Robust adaptive beamformers based on worst-case optimization and constraints on magnitude response[J]. IEEE Transaction on Signal Processing, 2009, 57(7): 2615–2628. doi: 10.1109/TSP.2009.2017004 -