一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢

肖博 霍凱 劉永祥

肖博, 霍凱, 劉永祥. 雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2019, 41(3): 739-750. doi: 10.11999/JEIT180515
引用本文: 肖博, 霍凱, 劉永祥. 雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢[J]. 電子與信息學報, 2019, 41(3): 739-750. doi: 10.11999/JEIT180515
Bo XIAO, Kai HUO, Yongxiang LIU. Development and Prospect of Radar and Communication Integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739-750. doi: 10.11999/JEIT180515
Citation: Bo XIAO, Kai HUO, Yongxiang LIU. Development and Prospect of Radar and Communication Integration[J]. Journal of Electronics & Information Technology, 2019, 41(3): 739-750. doi: 10.11999/JEIT180515

雷達通信一體化研究現(xiàn)狀與發(fā)展趨勢

doi: 10.11999/JEIT180515 cstr: 32379.14.JEIT180515
基金項目: 國家自然科學基金(61501481)
詳細信息
    作者簡介:

    肖博:男,1992年生,博士生,研究方向為雷達與通信波形設(shè)計與信號處理

    霍凱:男,1983年生,講師,研究方向為雷達波形設(shè)計與信號處理等

    劉永祥:男,1976年生,教授,博士生導師,研究方向為目標微動特性分析與識別等

    通訊作者:

    霍凱 huokai2001@163.com

  • 中圖分類號: TN959.1

Development and Prospect of Radar and Communication Integration

Funds: The National Natural Science Foundation of China (61501481)
  • 摘要:

    雷達通信一體化通過一套共用的硬件設(shè)備實現(xiàn)雷達探測與通信傳輸,相比于傳統(tǒng)單一的雷達或者通信設(shè)備,更易集成化、小型化和高效利用頻譜。該文系統(tǒng)地介紹了雷達通信一體化的原理與特點,指出了一體化研究中亟需解決的問題,從典型的基于線性調(diào)頻(LFM)的雷達通信一體化信號出發(fā),全面梳理了國內(nèi)外針對雷達通信一體化的相關(guān)研究,著重歸納了正交頻分復用(OFDM)與多入多出(MIMO)技術(shù)在雷達通信一體化波形設(shè)計、信號處理、一體化系統(tǒng)設(shè)計等幾個重點方向的研究進展,并分析了雷達通信一體化未來的可能發(fā)展趨勢及其在軍事領(lǐng)域和民用智能交通領(lǐng)域的重要應(yīng)用前景。

  • 圖  1  光線追蹤場景及其仿真結(jié)果

    圖  2  MIMO-SAR雷達通信一體化的雜波消除應(yīng)用仿真

    圖  3  邁阿密大學雷達通信一體化應(yīng)用場景及試驗系統(tǒng)

    圖  4  德國通信雷達一體化系統(tǒng)的應(yīng)用場景

    圖  5  德國通信雷達一體化系統(tǒng)的實況路測與試驗結(jié)果

  • 楊瑞娟, 陳小民, 李曉柏, 等. 雷達通信一體化共享信號技術(shù)研究[J]. 空軍預警學院學報, 2013, 27(1): 39–43. doi: 10.3969/j.issn.2095-5839.2013.01.010

    YANG Ruijuan, CHEN Xiaomin, LI Xiaobai, et al. Study of signal sharing technologies for integration of radar and communication systems[J]. Journal of Air Force Early Warning Academy, 2013, 27(1): 39–43. doi: 10.3969/j.issn.2095-5839.2013.01.010
    GUPTA A and JHA R K. A survey of 5G network: Architecture and emerging technologies[J]. IEEE Access, 2015, 3: 1206–1232. doi: 10.1109/ACCESS.2015.2461602
    SHANNON D B and ERIC L M. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071
    LIN Zhiyuan and WEI Ping. Pulse position modulation time hopping ultra wideband sharing signal for radar and communication system[C]. CIE International Conference on Radar, Shanghai, China, 2007: 4–7.
    LIU Zhipeng, ZHANG Wenkang, and XU Shanfeng. Implementation on the integrated waveform of radar and communication[C]. International Conference on Communication, Circuits and Systems, Chengdu, China, 2013: 200–204.
    LI Qingyu, ZHANG Yu, PAN Changyong, et al. Waveform design for high speed radar-communication integration[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 1–4.
    李曉柏, 楊瑞娟, 程偉. 基于頻率調(diào)制的多載波 Chirp 信號雷達通信一體化研究[J]. 電子與信息學報, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567

    LI Xiaobai, YANG Ruijuan, and CHENG Wei. Integrated radar and communication based on multicarrier frequency modulation Chirp signal[J]. Journal of Electronics &Information Technology, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567
    CENK S, JOHN J, PATRICK M M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. IEEE Radar Conference, Seattle, USA, 2017: 1498–1503.
    MICHAEL J N, ZHANG Zhiping, QU Yang, et al. Co-designed radar-communication using linear frequency modulation waveform[C]. Military Communications Conference, Baltimore, USA, 2016: 918–923.
    ZHANG Zhiping, QU Yang, DESSOURCES D A, et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 28–35. doi: 10.1109/MAES.2016.150236
    MACHAEL J N, ZHANG Zhiping, LORENZO L, et al. Mixed-modulated linear frequency modulated[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 313–320. doi: 10.1049/iet-rsn.2016.0249
    LI Xiaobai, YANG Ruijuan, ZHANG Zunquan, et al. Research of constructing method of complete complementary sequence in integrated radar and communication[C]. IEEE 11th International Conference on Signal Processing, Beijing, China, 2012, 3: 1729–1732.
    ZHANG Chaozhu and CHEN Qiang. Design of signal-sharing for radar and communication[C]. International Conference on Mechatronic Sciences, Electric Engineering and Computer(MEC), Shenyang, China, 2013: 1250–1253.
    ZHANG Yu, LI Qingyu, HUANG Ling, et al. A modified waveform design for radar-communication integration based on LFM-CPM[C]. Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–5.
    ZHANG Yu, LI Qingyu, HUANG Ling, et al. Waveform design for joint radar-communication with nonideal power amplifier and outband interference[C]. IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6.
    XU Shaojian, CHEN Bing, and ZHANG Ping. Radar-communication integration based on DSSS techniques[C]. International Conference on Signal Processing, Beijing, China, 2006: 142–144.
    FRANKEN G E A, NIKOOKAR H, and GENDEREN P V. Doppler tolerance of OFDM-coded radar signals[C]. IEEE Radar Conference, Manchester, UK, 2006: 108–111.
    CHENG Shengjuan, WANG Wenqin, and SHAO Huaizong. Spread spectrum-coded OFDM chirp waveform diversity design[J]. IEEE Sensors Journal, 2015, 15(10): 5694–5700. doi: 10.1109/JSEN.2015.2448617
    TIAN Xuanxuan and SONG Zhaohui. On radar and communication integrated system using OFDM signal[C]. IEEE Radar Conference, Seattle, USA, 2017: 318–323.
    JIN Shengcai and WU Wen. Joint communication and radar system based on multi-carrier interleave-division multiplexing[J]. Journal of Computational Information Systems, 2015, 11(2): 727–734. doi: 10.12733/jcis13161
    LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn:20000734
    WANG Wenqin, ZHENG Zhi, and ZHANG Shunsheng. OFDM chirp waveform diversity for co-designed radar-communication system[C]. 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–9.
    LI Cong, BAO Weimin, XU Luping, et al. Radar communication integrated waveform design based on OFDM and circular shift sequence[J]. Hindawi Mathematical Problems in Engineering, 2017, 18(7): 1–10. doi: 10.1155/2017/9840172
    SEBT M A, NOROUZI Y, SHEIKHI A, et al. OFDM radar signal design with optimized ambiguity function[C]. IEEE Radar Conference, Rome, Italy, 2008: 448–452.
    SATYABRATA S and ARYE N. Target detection in clutter using adaptive OFDM radar[J]. IEEE Signal Processing Letters, 2009, 16(7): 592–595. doi: 10.1109/LSP.2009.2020470
    JIANG Yicheng and GUO Sai. Spaceborne radar-communication integration signal design for moving target detection[C]. IET International Radar Conference, Hangzhou, China, 2015: 1–6.
    SEBT M A, SHEIKHI A, and NAYEBI M M. Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio[J]. IET Radar, Sonar & Navigation, 2009, 3(2): 122–132. doi: 10.1049/iet-rsn:20080106
    JOHN E, ZHANG Zhiping, MICHAEL W, et al. Multi-carrier radar waveforms for communications and detection[J]. IET Radar, Sonar & Navigation, 2017, 11(3): 444–452. doi: 10.1049/iet-rsn.2016.0244
    JOHN E, ZHANG Zhiping, WU Zhiqiang, et al. Dual-use multicarrier waveform for radar detection and communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1265–1278. doi: 10.1109/TAES.2017.2780578
    MUSSA A D, HAO Huan, WANG Xi, et al. Constant envelope chirped OFDM for power efficient radar communication[C]. IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 2016: 298–301.
    CHRISTIAN S and WERNER W. Joint integration of digital beam-forming radar with communication[C]. IET Radar Conference, Guilin, China, 2009: 1–4.
    WANG Zhaofeng, LIAO Guisheng, and YANG Zhiwei. A novel radar waveform based on space-frequency coding compatible with directional communication[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5.
    ABOULNASR H, MOENESS G A, YIMIN D Z, et al. Signaling strategies for dual-function radar communications: An overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 36–45. doi: 10.1109/MAES.2016.150225
    ABOULNASR H, BRAHAM H, and BRIAN D R. A dual-function MIMO radar-communications system using frequency-hopping waveforms[C]. IEEE Radar Conference, Seattle, USA, 2017: 1721–1725.
    ABOULNASR H, MOENESS G A, YIMIN D Z, et al. Phase-modulation based dual-function radar communications[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1411–1421. doi: 10.1049/iet-rsn.2015.0484
    ABOULNASR H, MOENESS G A, YIMIN D Z, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667
    ABOULNASR H, MOENESS G A, YIMIN D Z, et al. A dual function radar-communications system using sidelobe control and waveform diversity[C]. IEEE Radar Conference, Arlington, USA, 2015: 1260–1263.
    ABOULNASR H, SERGIY A V, and ARASH K. Transmit radiation pattern invariance in MIMO radar with application to DOA estimation[J]. IEEE Signal Processing Letters, 2015, 22(10): 1609–1613. doi: 10.1109/LSP.2015.2417220
    ANASTASIOS D, LI Bo, MATHEW C, et al. Spectrum sharing between radar and communication systems: Can the privacy of the radar be preserved[C]. 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 1285–1289.
    HUANG Ling, ZHANG Yu, LI Qingyu, et al. Phased array radar-based channel modeling and sparse channel estimation for an integrated radar and communication system[J]. IEEE Access, 2017, 5: 15468–15477. doi: 10.1109/ACCESS.2017.2731398
    TIAN Xuanxuan, ZHANG Tingting, ZHANG Qinyu, et al. Waveform design and processing in OFDM based radar-communication integrated systems[C]. IEEE International Conference on Communications in China (ICCC), Qingdao, China, 2017: 1–6.
    SHADDRACK Y N, WANG Wenqin, and ABDUL B. A time-modulated FD-MIMO array for integrated radar and communication systems[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(6): 1–4. doi: 10.1109/LAWP.2018.2829729
    MOMIN J, HANS Z, and YANG Xinshe. Sequence optimization for integrated radar and communication systems using meta-heuristic multiobjective methods[C]. IEEE Radar Conference, Seattle, USA, 2017: 502–507.
    YOKE L S, CHRISTIAN S, LARS R, et al. The OFDM joint radar-communication system: An overview[C]. International Conference on Advances in Satellite and Space Communications, Budapest, Hungary, 2011: 69–74.
    YOKE L S, CHRISTIAN S, and THOMAS Z. Interference cancellation for dynamic range improvement in an OFDM joint radar and communication system[C]. The 8th European Radar Conference, Manchester, UK, 2011: 333–336.
    YOKE L S, LARS R, CHRISTIAN S, et al. Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario[C]. IEEE Radar Conference, Kansas City, USA, 2011: 718–723.
    YOKE L S, CHRISTIAN S, and THOMAS Z. One-stage selective interference cancellation for the OFDM joint radar-communication system[C]. The 7th German Microwave Conference, Ilmenau, Germany, 2012: 1–4.
    TIGREK R F, WIM J A, and PIET V G. OFDM signals as the radar waveform to solve doppler ambiguity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 130–143. doi: 10.1109/TAES.2012.6129625
    BOUQUET E, SYLVAIN H, HAMED D, et al. An innovative and low complexity PAPR reduction technique for multicarrier systems[C]. The 9th European Conference on Wireless Technology, Manchester, UK, 2006: 162–165.
    LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. IEEE Radar Conference, Rome, Italy, 2008: 432–437.
    LELLOUCH G, TRAN P, and PATRICK V G. Wideband OFDM pulse burst and its capabilities for the Doppler processing in radar[C]. IEEE International Conference on Radar, Adelaide, Australia, 2008: 531–535.
    劉永軍, 廖桂生, 楊志偉, 等. 一種超分辨OFDM雷達通信一體化設(shè)計方法[J]. 電子與信息學報, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320

    LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. A super-resolution design method for integration of OFDM radar and communication[J]. Journal of Electronics &Information Technology, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320
    TIGREK R F, HEIJ W J A, and VAN G P. Multi-carrier radar waveform schemes for range and Doppler processing[C]. IEEE Radar Conference, Pasadena, USA, 2009: 1–5.
    DUAN Junqi. Multicarrier coherent pulse shaping for radar and corresponding signal processing[C]. The Eighth International Conference on Electronic Measurement and Instruments, Xi’an, China, 2007: 843–847.
    MOHSENI R, SHEIKHI A, and MASNADI S. A new approach to compress multicarrier phase-coded signals[C]. IEEE Radar Conference, Rome, Italy, 2008: 442–447.
    MOHSENI R, SHEIKHI A, and MASNADI S. Compression of multicarrier phase-coded radar signals with low sampling rate[C]. IEEE International Conference on Radar, Adelaide, Australia, 2008: 718–721.
    GABBIEL L, AMIT M, and MICHAEL I. Impact of the Doppler modulation on the range and Doppler processing in OFDM radar[C]. IEEE Radar Conference, Cincinnati, USA, 2014: 803–808.
    顧陳, 張勁東, 朱曉華. 基于OFDM的多載波調(diào)制雷達系統(tǒng)信號處理及檢測[J]. 電子與信息學報, 2009, 31(6): 1298–1300. doi: 10.3724/SP.J.1146.2008.00876

    GU Chen, ZHANG Jindong, and ZHU Xiaohua. Signal processing and detecting for multicarrier modulated radar system based on OFDM[J]. Journal of Electronics &Information Technology, 2009, 31(6): 1298–1300. doi: 10.3724/SP.J.1146.2008.00876
    BRIAN D C, SARAH A S, and LAWRENCE C. Electromagnetic interference to radar receivers due to in-band OFDM communications systems[C]. IEEE International Symposium on Electromagnetic Compatibility (EMC), Denver, USA, 2013: 72–75.
    JONATHAN S and DMITRIY G. Multifrequency OFDM SAR in presence of deception jamming[J]. EURASIP Journal on Advances in Signal Processing, 2010, 10(3): 1–13. doi: 10.1155/2010/451851
    WANG Wenqin. Multichannel SAR using waveform diversity and distinct carrier frequency for ground moving target indication[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5040–5051. doi: 10.1109/JSTARS.2015.2485166
    MECCA V F, RAMAKRISHMAN D, and KROLIK J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]. IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, USA, 2006: 249–253.
    WANG Zhaofeng, LIAO Guisheng, and YANG Zhiwei. Space-frequency modulation radar-communication and mismatched filterring[J]. IEEE Access, 2018, 6: 24837–24845. doi: 10.1109/ACCESS.2018.2829731
    LI Bo and ATHINA P. Radar precoding for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]. IEEE Global Conference on Signal and Information Processing, Orlando, USA, 2015: 737–741.
    LI Bo and ATHINA P. MIMO radar and communication spectrum sharing with cutter mitigation[C]. IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    LI Bo and ATHINA P. Joint transmit designs for co-existence of MIMO wireless communications and sparse sensing radars in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2846–2864. doi: 10.1109/TAES.2017.2717518
    LI Bo and ATHINA P. Spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2444–2448.
    LI Bo, ATHINA P, and WADE T. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4562–4575. doi: 10.1109/TSP.2016.2569479
    QIAN Junhui, MARCO L, ZHENG Le, et al. Joint system design for coexistence of MIMO radar and MIMO communication[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3504–3519. doi: 10.1109/TSP.2018.2831624
    LIU Fan, CHRISTOS M, LI Ang, et al. MIMO radar and cellular coexistence: A power-efficient approach enabled by interference exploitation[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3681–3695. doi: 10.1109/TSP.2018.2833813
    LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 1–4.
    DIMITRIY G, JONATHAN S, KYLE K, et al. Wideband OFDM system for radar and communications[C]. IEEE Radar Conference, Pasadena, USA, 2009: 1–6.
    CHRISTIAN S, THOMAS Z, and WERNER W. An OFDM system concept for joint radar and communications operations[C]. IEEE Vehicular Technology Conference, Barcelona, Spain, 2009: 1–5.
    CHRISTIAN S and WERNER W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110
    LI Jinming, PENG Laixian, YE Yilei, et al. A neighbor discovery algorithm in network of radar and communication integrated system[C]. 17th International Conference on Computational Science and Engineering, Chengdu, China, 2014: 1142–1149.
    MARIAN B and VISA K. Delay estimation method for coexisting radar and wireless communication systems[C]. IEEE Radar Conference, Seattle, USA, 2017: 1157–1161.
  • 加載中
圖(5)
計量
  • 文章訪問數(shù):  10343
  • HTML全文瀏覽量:  3459
  • PDF下載量:  955
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-05-25
  • 修回日期:  2018-11-23
  • 網(wǎng)絡(luò)出版日期:  2018-12-05
  • 刊出日期:  2019-03-01

目錄

    /

    返回文章
    返回