一级黄色片免费播放|中国黄色视频播放片|日本三级a|可以直接考播黄片影视免费一级毛片

高級搜索

留言板

尊敬的讀者、作者、審稿人, 關(guān)于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復(fù)。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內(nèi)容
驗證碼

一種用于中國地區(qū)的對流層天頂延遲實時修正模型

杜曉燕 喬江 衛(wèi)佩佩

杜曉燕, 喬江, 衛(wèi)佩佩. 一種用于中國地區(qū)的對流層天頂延遲實時修正模型[J]. 電子與信息學(xué)報, 2019, 41(1): 156-164. doi: 10.11999/JEIT180353
引用本文: 杜曉燕, 喬江, 衛(wèi)佩佩. 一種用于中國地區(qū)的對流層天頂延遲實時修正模型[J]. 電子與信息學(xué)報, 2019, 41(1): 156-164. doi: 10.11999/JEIT180353
Xiaoyan DU, Jiang QIAO, Peipei WEI. Real-time Correction Model for Zenith Tropospheric Delay Applied to the Chinese Region[J]. Journal of Electronics & Information Technology, 2019, 41(1): 156-164. doi: 10.11999/JEIT180353
Citation: Xiaoyan DU, Jiang QIAO, Peipei WEI. Real-time Correction Model for Zenith Tropospheric Delay Applied to the Chinese Region[J]. Journal of Electronics & Information Technology, 2019, 41(1): 156-164. doi: 10.11999/JEIT180353

一種用于中國地區(qū)的對流層天頂延遲實時修正模型

doi: 10.11999/JEIT180353 cstr: 32379.14.JEIT180353
詳細信息
    作者簡介:

    杜曉燕:女,1975年生,副教授,研究方向為電磁場、微波技術(shù)與天線等

    喬江:男,1995年生,碩士生,研究方向為對流層電波傳播

    衛(wèi)佩佩:女,1990年生,博士生,研究方向為電波傳播、電磁計算及反演問題等

    通訊作者:

    喬江 qj951213@163.com

  • 中圖分類號: TN011.3

Real-time Correction Model for Zenith Tropospheric Delay Applied to the Chinese Region

  • 摘要:

    針對目前對流層延遲修正受限于探空數(shù)據(jù)不足導(dǎo)致修正效率低的問題,該文結(jié)合Saastamoinen和GPT2w模型構(gòu)建形成組合模型Sa+GPT2w模型,通過利用GPT2w模型提供的高精度氣象數(shù)據(jù),實現(xiàn)中國地區(qū)對流層天頂延遲(ZTD)的實時修正,克服對探空數(shù)據(jù)的依賴,并用實測數(shù)據(jù)對計算結(jié)果進行驗證。以IGS提供的中國地區(qū)2015至2017年ZTD時間序列為評估標準時,Sa+GPT2w模型(bias: 1.661 cm, RMS: 4.711 cm)的精度較同等條件下的Sa+EGNOS, Sa+UNB3m和Hop+GPT2w模型分別提升50.5%, 41.9%和37.1%;以GGOS Atmosphere 2017年ZTD數(shù)據(jù)為標準時,Sa+GPT2w模型(bias: 1.551 cm, RMS: 4.859 cm)的精度相對同等條件下的另3種模型分別提升49.5%, 38.5%和46.8%;最后對Sa+EGNOS, Sa+UNB3m和Sa+GPT2w模型在ZTD修正中誤差結(jié)果的時空分布特征進行分析。研究結(jié)果可為在中國地區(qū)的導(dǎo)航定位、大氣折射研究中,應(yīng)用不同氣象參數(shù)模型進行ZTD修正的有效性和可能達到的精度提供參考。

  • 圖  1  利用GPT2w模型獲取測站氣象參數(shù)示意圖

    圖  2  IGS測站處的誤差月均值變化示意圖

    圖  3  以中國地區(qū)GGOS格點數(shù)據(jù)為標準的誤差變化示意圖

    圖  4  以2017年GGOS數(shù)據(jù)為標準時不同年積日的bias和RMS空間變化示意圖

    表  1  中國地區(qū)IGS測站信息(按緯度升序排列)

    ID測站緯度(°N)經(jīng)度(°E)高程(m)
    ATCMS24.80120.9977.3
    BTWTF24.95121.16184.0
    CKUNM25.03102.802019.1
    DLHAZ29.6691.103622.0
    EWUHN30.53114.3642.6
    FSHAO31.10121.2022.1
    GXIAN34.37109.22498.5
    HBJFS39.61115.8998.3
    IGUAO43.4787.172049.2
    JURUM43.5987.63917.9
    KCHAN43.79125.44253.7
    下載: 導(dǎo)出CSV

    表  2  相對IGS測站數(shù)據(jù)的誤差統(tǒng)計結(jié)果(cm)

    IDSa+EGNOS Sa+UNB3m Sa+GPT2w Hop+GPT2w
    biasRMSbiasRMSbiasRMSbiasRMS
    A20151.0487.969 2.5098.328 1.6155.883 0.9115.641
    20162.1598.585 3.6219.126 2.7295.969 2.0255.700
    20171.3128.3852.7738.7771.8795.811 1.1755.644
    B20150.2147.7362.6228.1481.4975.7681.9515.906
    20161.1008.2163.5088.8542.3865.7432.8395.956
    20170.3168.1022.7248.5191.6005.6492.0535.804
    C2015–6.9399.8173.6317.2510.5303.59510.54611.207
    2016–6.7289.7533.8397.5020.7423.81310.77111.466
    2017–6.7569.9773.8147.6340.7133.73210.73511.417
    D2015–10.19711.8391.4944.4270.3551.66712.81612.938
    2016–9.77811.9081.8995.3300.7652.03913.22113.347
    2017–10.00712.1171.6265.2240.4861.90612.9513.055
    E2015–2.21610.376–0.79910.1153.7397.0873.0576.748
    2016–1.25011.5350.16011.3814.7108.0614.0287.673
    2017–1.46811.776–0.06011.5774.4857.8433.8037.465
    F2015–2.81011.278–1.49211.0022.2637.4791.2857.237
    2016–1.59111.837–0.27111.6753.4797.8392.5027.432
    2017–2.53112.166–1.20111.8962.5456.9991.5676.692
    G2015–4.4779.843–0.0538.3541.7635.2573.9666.345
    2016–3.73810.0550.6788.8962.4935.3134.6966.648
    2017–4.06610.1060.3588.8162.1725.3144.3756.526
    H2015–3.9889.464–1.6378.7031.1364.2070.8754.152
    2016–3.57610.227–1.2289.6391.5464.9291.2864.822
    2017–4.08810.626–1.7369.8611.0384.8110.7774.743
    I2015–4.1567.3272.1224.8730.6562.25910.20610.429
    2016–3.7277.3342.5415.4081.0732.72710.61510.906
    2017–4.2027.4152.1004.9270.6342.18410.17710.385
    J2015–3.0516.9801.2905.5171.1153.3205.4376.261
    2016–2.4407.3081.8906.3241.7114.0696.0337.064
    2017–3.0717.1171.2695.6191.0953.2285.4176.202
    K2015–3.7808.453–1.4017.4740.6403.4471.2823.654
    2016–3.5318.846–1.1558.0080.8823.7121.5243.907
    2017–4.0929.337–1.7168.3230.3273.8150.9693.922
    平均–3.3979.5091.0218.1061.6614.7115.0267.494
    下載: 導(dǎo)出CSV

    表  3  相對GGOS格網(wǎng)數(shù)據(jù)的誤差統(tǒng)計結(jié)果(cm)

    統(tǒng)計類型Sa+EGNOSSa+UNB3mSa+GPT2wHop+GPT2w
    biasMin–6.961 –0.812 –0.086 2.716
    Max1.9323.4613.4459.473
    Mean–3.605 1.3931.5516.581
    RMSMin7.7685.4802.5856.928
    Max11.428 10.010 7.28411.786
    Mean9.6317.8994.8599.135
    下載: 導(dǎo)出CSV

    表  4  相對IGS數(shù)據(jù)的誤差統(tǒng)計結(jié)果(cm)

    ID年份Sa+EGNOS Sa+UNB3m Sa+GPT2w
    biasRMSbiasRMSbiasRMS
    B20120.2407.4352.6487.9001.7755.965
    2018–7.2189.611–4.8397.940–0.0585.082
    G2012–4.84910.676–0.4199.0801.3755.153
    2018–11.80113.128–7.3688.823–0.0692.302
    I2012–4.7177.8631.5644.8610.0862.005
    2018–8.4779.787–1.8773.303–0.3031.104
    下載: 導(dǎo)出CSV
  • 趙靜旸, 宋淑麗, 陳欽明, 等. 基于垂直剖面函數(shù)式的全球?qū)α鲗犹祉斞舆t模型的建立[J]. 地球物理學(xué)報, 2014, 57(10): 3140–3153. doi: 10.6038/cjg20141005

    ZHAO Jingyang, SONG Shuli, CHEN Qinming, et al. Establishment of a new global model for zenith tropospheric delay based on functional expression for its vertical profile[J]. Chinese Journal of Geophysics, 2014, 57(10): 3140–3153. doi: 10.6038/cjg20141005
    姚宜斌, 何暢勇, 張豹, 等. 一種新的全球?qū)α鲗犹祉斞舆t模型GZTD[J]. 地球物理學(xué)報, 2013, 56(7): 2218–2227. doi: 10.6038/cjg20130709

    YAO Yibin, HE Changyong, ZHANG Bao, et al. A new global zenith tropospheric delay model GZTD[J]. Chinese Journal of Geophysics, 2013, 56(7): 2218–2227. doi: 10.6038/cjg20130709
    HOPFIELD H S. Troposphere effect on electromagnetic measured range: Prediction from surface weather data[J]. Radio Science, 1971, 6(3): 357–367. doi: 10.1029/RS006i003p00357
    SAASTAMOINEN J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites[J]. Use of Artificial Satellites for Geodesy, 1972, 15(6): 247–251. doi: 10.1029/GM015p0247
    楊徉, 喻國榮, 潘樹國, 等. 一種綜合的對流層延遲模型算法[J]. 東南大學(xué)學(xué)報(自然科學(xué)版), 2013, 43(S2): 418–422. doi: 10.3969/j.issn.1001-0505.2013.S2.043

    YANG Yang, YU Guorong, PAN Shuguo, et al. A comprehensive algorithm using fusion of tropospheric delay models[J]. Journal of Southeast University(Natural Science Edition), 2013, 43(S2): 418–422. doi: 10.3969/j.issn.1001-0505.2013.S2.043
    姚宜斌, 張豹, 嚴鳳, 等. 兩種精化的對流層延遲改正模型[J]. 地球物理學(xué)報, 2015, 58(5): 1492–1501. doi: 10.6038/cjg20150503

    YAO Yibin, ZHANG Bao, YAN Feng, et al. Two new sophisticated models for tropospheric delay corrections[J]. Chinese Journal of Geophysics, 2015, 58(5): 1492–1501. doi: 10.6038/cjg20150503
    劉繼業(yè), 陳西宏, 劉贊. 對流層散射雙向時間比對中對流層斜延遲實時估計[J]. 電子與信息學(xué)報, 2018, 40(3): 587–593. doi: 10.11999/JEIT170581

    LIU Jiye, CHEN Xihong, and LIU Zan. Real-time estimation of tropospheric slant delay in two-way troposphere time transfer[J]. Journal of Electronics &Information Technology, 2018, 40(3): 587–593. doi: 10.11999/JEIT170581
    滑中豪, 柳林濤, 梁星輝. GPT2w模型檢驗以及對流層模型的參數(shù)互融[J]. 武漢大學(xué)學(xué)報:信息科學(xué)版, 2017, 42(10): 1468–1473. doi: 10.13203/j.whugis20150758

    HUA Zhonghao, LIU Lintao, and LIANG Xinghui. An assessment of GPT2w model and fusion of a troposphere model with in situ data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1468–1473. doi: 10.13203/j.whugis20150758
    施宏凱, 何秀鳳, 王俊杰. 全球氣壓氣溫模型在中國地區(qū)的精度分析[J]. 大地測量與地球動力學(xué), 2017, 37(8): 841–844. doi: 10.14075/j.jgg.2017.08.014

    SHI Hongkai, HE Xiufeng, and WANG Junjie. Accuracy analyses of global pressure and temperature model in China[J]. Journal of Geodesy and Geodynamics, 2017, 37(8): 841–844. doi: 10.14075/j.jgg.2017.08.014
    LAGLER K, SCHINDELEGGER M, and NILSSON T. GPT2: Empirical slant delay model for radio space geodetic tech-niques[J]. Geophysical Research Letters, 2013, 40(6): 1069–1073. doi: 10.1002/grl.50288
    B?HM J, M?LLER G, SCHINDELEGGER M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433–441. doi: 10.1007/s10291-014-0403-7
    BRAUN J, ROCKEN C, and WARE R. Validation of line-of-sight water vapor measurements with GPS[J]. Radio Science, 2001, 36(3): 459–472. doi: 10.1029/2000RS002353
    姚宜斌, 徐星宇, 胡羽豐. GGOS對流層延遲產(chǎn)品精度分析及在PPP中的應(yīng)用[J]. 測繪學(xué)報, 2017, 46(3): 278–287. doi: 10.11947/j.AGCS.2017.20160383

    YAO Yibin, XU Xingyu, and HU Yufeng. Precision analysis of GGOS tropospheric delay product and its application in PPP[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 278–287. doi: 10.11947/j.AGCS.2017.20160383
    ASKNE J and NORDIUS H. Estimation of tropospheric delay for microwaves from surface weather data[J]. Radio Science, 1987, 22(3): 379–386. doi: 10.1029/RS022i003p00379
    NIGEL P and ALAN D. Assessment of EGNOS tropospheric correction model[J]. Journal of Navigation, 1999, 54(1): 37–55.
    LEANDRO R F, LANGLEY R B, and SANTOS M C. UNB3m_pack: A neutral atmosphere delay package for radiometric space techniques[J]. GPS Solutions, 2008, 12(1): 65–70. doi: 10.1007/s10291-007-0077-5
    QU Weijing, ZHU Wenyao, SONG Shuli, et al. Evaluation of the precision of three tropospheric delay correction models[J]. Chinese Astronomy and Astrophysics, 2008, 32(4): 429–438. doi: 10.1016/j.chinastron.2008.10.010
    中國天氣網(wǎng). 2016年中國十大天氣氣候事件評選結(jié)果[OL]. http://news.weather.com.cn/2016/12/2638475.shtml. 2016.12.
  • 加載中
圖(4) / 表(4)
計量
  • 文章訪問數(shù):  2443
  • HTML全文瀏覽量:  681
  • PDF下載量:  48
  • 被引次數(shù): 0
出版歷程
  • 收稿日期:  2018-04-17
  • 修回日期:  2018-09-26
  • 網(wǎng)絡(luò)出版日期:  2018-10-23
  • 刊出日期:  2019-01-01

目錄

    /

    返回文章
    返回