物聯(lián)網(wǎng)中一種抗大規(guī)模天線陣列竊聽者的噪聲注入方案
doi: 10.11999/JEIT180342 cstr: 32379.14.JEIT180342
-
國家數(shù)字交換系統(tǒng)工程技術(shù)研究中心 ??鄭州 ??450002
A Noise Injection Scheme Resistant to Massive MIMO Eavesdropper in IoT
-
National Digital Switching System Engineering & Technological Research Center, Zhengzhou 450002, China
-
摘要:
物聯(lián)網(wǎng)中無線傳輸?shù)陌踩y題是制約其發(fā)展的重要瓶頸,物聯(lián)網(wǎng)終端受限的計算能力與硬件配置以及配備大規(guī)模天線陣列的竊聽者給物理層安全技術(shù)帶來了新的挑戰(zhàn)。針對該問題,該文提出一種可對抗大規(guī)模天線陣列竊聽者的輕量級噪聲注入策略。首先,對所提出的噪聲注入策略進(jìn)行介紹,并分析了該策略的安全性;然后,基于該策略得到了系統(tǒng)吞吐量的閉式表達(dá)式,并對時隙分配系數(shù)和功率分配系數(shù)進(jìn)行優(yōu)化設(shè)計。理論和仿真結(jié)果表明,通過對物聯(lián)網(wǎng)系統(tǒng)參數(shù)進(jìn)行設(shè)計,所提出的噪聲注入策略能夠?qū)崿F(xiàn)私密信息的安全傳輸。
-
關(guān)鍵詞:
- 物聯(lián)網(wǎng) /
- 物理層安全 /
- 噪聲注入
Abstract:The security issue of wireless transmission becomes a significant bottleneck in the development of Internet of Things (IoT). The limited computing capability and hardware configuration of IoT terminals and eavesdroppers equipped with massive Multiple-Input Multiple-Output (MIMO) bring new challenges to physical layer security technology. To solve this problem, a lightweight noise injection scheme is proposed that can combat massive MIMO eavesdropper. Firstly, the proposed noise injection scheme is introduced, along with the corresponding secrecy analysis. Then, the close-formed expression of the throughput is derived based on the proposed scheme. Furthermore, the slot allocation coefficient and power allocation coefficient are optimized. The analytical and simulation results show that the proposed noise injection scheme can achieve the security of private information transmission by designing of the IoT system parameters.
-
Key words:
- Internet of Things (IoT) /
- Physical layer security /
- Noise injection
-
AKPAKWU G A, SILVA B J, HANCKE G P, et al. A survey on 5G networks for the internet of things: Communication technologies and challenges[J]. IEEE Access, 2017, 99(6): 3619–3647. doi: 10.1109/ACCESS.2017.2779844 MASSEY J L. An introduction to contemporary cryptology[J]. Proceedings of the IEEE, 1988, 76(5): 533–549. doi: 10.1109/5.4440 黃開枝, 張波. 異構(gòu)密集網(wǎng)中一種抗多竊聽者的協(xié)作安全波束成形方案[J]. 電子與信息學(xué)報, 2017, 39(7): 1673–1680. doi: 10.11999/JEIT161152HUANG Kaizhi and ZHANG Bo. Cooperative secrecy beamforming scheme resistant to multi-eavesdroppers in dense heterogeneous networks[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1673–1680. doi: 10.11999/JEIT161152 LI Yiqing, JIANG Miao, ZHANG Qi, et al. Secure beamforming in downlink MISO non-orthogonal multiple access systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7563–7567. doi: 10.1109/TVT.2017.2658563 DENG Yansha, WANG Lifeng, YUAN Jinhong, et al. Artificial-noise aided secure transmission in large scale spectrum sharing networks[J]. IEEE Transactions on Communications, 2016, 64(5): 2116–2129. doi: 10.1109/TCOMM.2016.2544300 LIU Chenxi, YANG Nan, MALANEY R, et al. Artificial-noise-aided transmission in multi-antenna relay wiretap channels with spatially random eavesdroppers[J]. IEEE Transactions on Wireless Communications, 2016, 15(11): 7444–7456. doi: 10.1109/TWC.2016.2602337 MUKHERJEE A. Physical-layer security in the internet of things: Sensing and communication confidentiality under resource constraints[J]. Proceedings of the IEEE, 2015, 103(10): 1747–1761. doi: 10.1109/JPROC.2015.2466548 XU Qian, REN Pinyi, SONG Houbing, et al. Security enhancement for IoT communications exposed to eavesdroppers with uncertain locations[J]. IEEE Access, 2016, 4: 2840–2853. doi: 10.1109/ACCESS.2016.2575863 KIM J and CHOI J P. Cancellation-based friendly jamming for physical layer security[C]. IEEE Global Communications Conference, Washington, USA, 2016: 16655354. Al-NAHARI A. Physical layer security using massive multiple-input and multiple-output: Passive and active eavesdroppers[J]. IET Communications, 2016, 10(1): 50–56. doi: 10.1049/iet-com.2015.0216 WU Yongpeng, SCHOBER R, NG D W K, et al. Secure massive MIMO transmission with an active eavesdropper[J]. IEEE Transactions on Information Theory, 2016, 62(7): 3880–3900. doi: 10.1109/TIT.2016.2569118 WANG Chao and WANG Huiming. Robust joint beamforming and jamming for secure AF networks: Low-Complexity design[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5): 2192–2198. doi: 10.1109/TVT.2014.2334640 HE Biao, SHE Yechao, and LAU V K N. Artificial noise injection for securing single-antenna systems[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10): 9577–9581. doi: 10.1109/TVT.2017.2703159 黃開枝, 許耘嘉, 丁大釗, 等. 非理想情況下K層密集異構(gòu)蜂窩網(wǎng)的安全性能分析[J]. 電子與信息學(xué)報, 2017, 39(10): 2456–2463. doi: 10.11999/JEIT161376HUANG Kaizhi, XU Yunjia, DING Dazhao, et al. Secrecy performance analysis of K-tier dense heterogeneous cellular networks with imperfect channel state information[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2456–2463. doi: 10.11999/JEIT161376 ZHANG Yuanyu, SHEN Yulong, WANG Hua, et al. On secure wireless communications for IoT under eavesdropper collusion[J]. IEEE Transactions on Automation Science & Engineering, 2016, 13(3): 1281–1293. doi: 10.1109/TASE.2015.2497663 ZHOU Xiangyun, MEKAT M R, MAHAM B, et al. Rethinking the secrecy outage formulation: A secure transmission design perspective[J]. IEEE Communications Letters, 2011, 15(3): 302–304. doi: 10.1109/LCOMM.2011.011811.102433 HE Biao and ZHOU Xiangyun. Secure on-off transmission design with channel estimation errors[J]. IEEE Transactions on Information Forensics & Security, 2013, 8(12): 1923–1936. doi: 10.1109/TIFS.2013.2284754 ZHU Fengchao, GAO Feifei, YAO Minli, et al. Joint information and jamming-beamforming for physical layer security with full duplex base station[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6391–6401. doi: 10.1109/TSP.2014.2364786 -