一種自適應(yīng)的太赫茲無線個(gè)域網(wǎng)高效定向MAC協(xié)議
doi: 10.11999/JEIT180306 cstr: 32379.14.JEIT180306
-
1.
重慶郵電大學(xué)移動(dòng)通信技術(shù)重慶市重點(diǎn)實(shí)驗(yàn)室 ??重慶 400065
-
2.
中國工程物理研究院激光聚變研究中心 ??成都 610000
An Adaptive Directional MAC Protocol for Terahertz Wireless Personal Networks
-
1.
Chongqing Key Laboratory of Mobile Communication Technology, Chongqing University of Post & Telecommunications, Chongqing 400065, China
-
2.
Research Center of Laser Fusion, Chinese Academy of Engineering Physics, Chengdu 610000, China
-
摘要:
針對(duì)現(xiàn)有太赫茲無線個(gè)域網(wǎng)定向MAC協(xié)議存在的波束訓(xùn)練開銷和入網(wǎng)時(shí)延偏大以及Beacon, S-CAP時(shí)段時(shí)隙利用不足問題,該文提出一種自適應(yīng)的定向MAC協(xié)議——AD-MAC,自適應(yīng)地在靜態(tài)場(chǎng)景下采用全網(wǎng)協(xié)同波束訓(xùn)練,在動(dòng)態(tài)場(chǎng)景下節(jié)點(diǎn)基于歷史信息快速回復(fù)波束訓(xùn)練幀,同時(shí)使用反向監(jiān)聽策略減小同扇區(qū)節(jié)點(diǎn)的幀碰撞概率,并且通過時(shí)隙復(fù)用在Beacon和S-CAP時(shí)段并行發(fā)送控制幀和數(shù)據(jù)幀。理論分析表明了AD-MAC協(xié)議的有效性,仿真結(jié)果顯示:相較于ENLBT-MAC等典型協(xié)議,AD-MAC在靜態(tài)場(chǎng)景下的波束訓(xùn)練開銷和節(jié)點(diǎn)平均入網(wǎng)時(shí)延分別降低了約21.84%和22.70%,在動(dòng)態(tài)場(chǎng)景下上述二指標(biāo)則分別減小了約18.7%和13.07%。
-
關(guān)鍵詞:
- 無線個(gè)域網(wǎng) /
- 太赫茲 /
- MAC協(xié)議 /
- 定向
Abstract:To reduce the beamforming training cost and network delay, make the best of Beacon and S-CAP sub-period in the existing Terahertz Wireless Personal Access Network (TWPAN) directional MAC protocols, an Adaptive Directional MAC (AD-MAC) protocol for TWPAN is proposed. AD-MAC adaptively uses the entire network cooperative beam training in a static scenario, and makes network nodes quickly respond to beam training frames based on historical information in a dynamic scenario. The reverse listening strategy is used to reduce the collision probability of same sector nodes. The control frame and data frame are transmitted simultaneously in the Beacon and S-CAP slot using time-slot reuse. Theoretical analysis verifies the effectiveness of AD-MAC. Also, simulation results show that, comparing with ENLBT-MAC, AD-MAC reduces about 21.84% of beamforming training cost and 22.70% of the average network delay in static scene, and reduces about 18.7% of beamforming training cost and 13.07% of the average network delay in dynamic scene.
-
Key words:
- Wireless personal access networks /
- Terahertz /
- MAC protocols /
- Orientation
-
表 1 公共仿真參數(shù)
參數(shù)(單位) 數(shù)值 節(jié)點(diǎn)數(shù)目(個(gè)) 4,7,10,13,16 波束寬度(°) 5 傳輸速率(Gbps) 10 收發(fā)端距離(m) 10 仿真時(shí)間(s) 10 超幀周期(ms) 10 節(jié)點(diǎn)緩存(Mb) 10 發(fā)包間隔(ms) 0.08 數(shù)據(jù)幀長(zhǎng)(bit) 64000 下載: 導(dǎo)出CSV
-
GE Xiaohu, TU Song, MAO Guoqiang, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72–79. doi: 10.1109/MWC.2016.7422408 張健, 鄧賢進(jìn), 王成, 等. 太赫茲高速無線通信: 體制, 技術(shù)與驗(yàn)證系統(tǒng)[J]. 太赫茲科學(xué)與電子信息學(xué)報(bào), 2014, 12(1): 1–13. doi: 10.11805/TKYDA201401.0013ZHANG Jian, DENG Xianjin, WANG Cheng, et al. Terahertz high speed wireless communications: Systems, techniques and demonstrations[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(1): 1–13. doi: 10.11805/TKYDA201401.0013 WANG Pu, JORNET J M, MALIK M G A, et al. Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the terahertz band[J]. Ad Hoc Networks, 2013, 11(8): 2541–2555. doi: 10.1016/j.adhoc.2013.07.002 MUMTAZ S, JORNET J M, AULIN J, et al. Terahertz communication for vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(7): 5617–5625. doi: 10.1109/TVT.2017.2712878 YAO Xinwei and JORNET J M. TAB-MAC: Assisted beamforming MAC protocol for terahertz communication networks[J]. Nano Communication Networks, 2016, 9: 36–42. doi: 10.1016/j.nancom.2016.07.003 任智, 游磊, 呂昱輝, 等. 高時(shí)隙利用率太赫茲無線個(gè)域網(wǎng)公平接入?yún)f(xié)議[J]. 系統(tǒng)工程與電子技術(shù), 2017, 39(10): 2339–2345. doi: 10.3969/j.issn.1001-506X.2017.10.27REN Zhi, YOU Lei, Lü Yuhui, et al. High-slot-utilization and fair access protocol for terahertz wireless personal area networks[J]. Systems Engineering and Electronics, 2017, 39(10): 2339–2345. doi: 10.3969/j.issn.1001-506X.2017.10.27 CAO Jianling, WANG Min, CHEN Cong, et al. High-throughput low-delay MAC protocol for terahertz ultra-high data-rate wireless networks[J]. The Journal of China Universities of Posts and Telecommunications, 2016, 23(4): 17–24. doi: 10.1016/S1005-8885(16)60041-9 SHAHRAM M, MICHELE C W, and SAJAL K D. DRIH-MAC: A distributed receiver-initiated harvesting-aware MAC for nanonetworks[J]. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2015, 1(1): 97–110. doi: 10.1109/TMBMC.2015.2465519 KEN H, TORU T, MAKOTO Y, et al. Modifications to the draft TG3d ARD after the July 2014 meeting[OL]. https:mentor.ieee.org/802.15/dcn/14/15-14-0528-00-003d-modification-of-tg3d-ard-after-july-meeting.docx. 2014. BILE P, SEBASTIAN P, and THOMAS K. Fast beam searching concept for indoor terahertz communications[C]. The 8th European Conference on Antennas and Propagation, Hague, Netherlands, 2014: 639–643. doi: 10.1109/EuCAP.2014.6901840. WANG Junyi, ZHOU Lan, PYO C W, et al. Beam codebook based beamforming protocol for multi-Gbps millimeter-wave WPAN systems[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(8): 1390–1399. doi: 10.1109/JSAC.2009.091009 IEEE Standard802.15.3c-2009. Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications for high rate Wireless Personal Area Networks (WPANs) amendment 2: Millimeter-wave-based alternative physical layer extension[S]. IEEE Computer Society, 2009. IEEE 802.11ad-2012. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications amendment 3: enhancements for very high throughput in the 60 GHz band[S]. IEEE Computer Society, 2012. AKHTAR A and ERGEN S C. Efficient network level beamforming training for IEEE 802.11 ad WLANs[C]. International Symposium Performance Evaluation of Computer and Telecommunication Systems, Chicago, USA, 2015: 1–6, doi: 10.1109/SPECTS.2015.7285289. CHONG Han, TONG Wenqian, and WU Xinyi. A memory-assisted MAC protocol with angular-division-multiplexing in terahertz networks[C]. IEEE International Conference on Computer Communications and Networks, Paris, France, 2017: 1–6. -