基于航跡矢量檢測(cè)的雷達(dá)與電子支援設(shè)施抗差關(guān)聯(lián)算法
doi: 10.11999/JEIT180303 cstr: 32379.14.JEIT180303
-
海軍航空大學(xué)信息融合研究所 煙臺(tái) 264001
Anti-bias Track Association Algorithm of Radar and Electronic Support Measurements Based on Track Vectors Detection
-
Institute of Information Fusion, Naval Aviation University, Yantai 264001, China
-
摘要:
針對(duì)雷達(dá)與電子支援設(shè)施(ESM)存在系統(tǒng)誤差、上報(bào)目標(biāo)不完全一致等復(fù)雜場(chǎng)景下目標(biāo)航跡關(guān)聯(lián)問(wèn)題,該文基于高斯隨機(jī)矢量統(tǒng)計(jì)特性,提出一種基于航跡矢量檢測(cè)的雷達(dá)與ESM航跡抗差關(guān)聯(lián)算法。首先在修正極坐標(biāo)系(MPC)下推導(dǎo)目標(biāo)狀態(tài)估計(jì)分解方程,采用真實(shí)狀態(tài)對(duì)消的方法得到航跡矢量,為剔除大部分非同源目標(biāo)航跡,構(gòu)建方位角變化率-距離變化率與距離比(ITG)統(tǒng)計(jì)量進(jìn)行粗關(guān)聯(lián),然后采用基于航跡矢量
\begin{document}${\chi ^2}$\end{document} 檢驗(yàn)的方法實(shí)現(xiàn)雷達(dá)與ESM的航跡關(guān)聯(lián)。最后通過(guò)實(shí)驗(yàn)仿真驗(yàn)證了該文算法在不同系統(tǒng)誤差、目標(biāo)密度、檢測(cè)概率等環(huán)境下的有效性。
-
關(guān)鍵詞:
- 航跡關(guān)聯(lián) /
- 系統(tǒng)誤差 /
- 雷達(dá) /
- 電子支援設(shè)施 /
- 航跡矢量 /
- 修正極坐標(biāo)系
Abstract:To address track-to-track association problem of radar and Electronic Support Measurements (ESM) in the presence of sensor biases and different targets reported by different sensors, an anti-bias track-to-track association algorithm based on track vectors detection is proposed according to the statistical characteristics of Gaussian random vectors. The state estimation decomposition equation is firstly derived in the Modified Polar Coordinates (MPC). The track vectors are obtained by the real state cancellation method. Second, In order to eliminate most non-homologous target tracks, the rough association is performed according to the features of the azimuthal rate and Inverse-Time-to-Go (ITG). Finally, the track-to-track association of radar and ESM is extracted based on track vectors chi-square distribution. The effectiveness of the proposed algorithm are verified by Monte Carlo simulation experiments in the presence of sensor biases, targets densities and detection probabilities.
-
ZHU Hao, WANG Mingliang, Yuen K V, et al. Track-to-track association by coherent point drift[J]. IEEE Signal Processing Letters, 2017, 24(5): 643–647. doi: 10.1109/LSP.2017.2682857 彭彬彬, 關(guān)欣. 基于空間分布信息的雷達(dá)與ESM航跡灰色關(guān)聯(lián)算法[J]. 電光與控制, 2017, 24(6): 34–38. doi: 10.3969/j.issn.1671-637X.2017.06.007.PENG Binbin and GUAN Xin. Gray track correlation algorithm of radar and ESM based on spatial distribution information[J]. Electronics Optics &Control, 2017, 24(6): 34–38. doi: 10.3969/j.issn.1671-637X.2017.06.007. PENG Binbin and GUAN Xin. A new track association algorithm of radar and ESM[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059337. QI Lin, DONG Kai, LIU Yu, et al. Anti-bias track-to-track association algorithm based on distance detection[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 269–276. doi: 10.1049/iet-rsn.2016.0139 李保珠, 董云龍, 李秀友, 等. 基于t分布混合模型的抗差關(guān)聯(lián)算法[J]. 電子與信息學(xué)報(bào), 2017, 39(7): 1774–1778. doi: 10.11999/JEIT161084.LI Baozhu, DONG Yunlong, LI Xiuyou, et al. Anti-bias track association algorithm based on t-distribution mixture model[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1774–1778. doi: 10.11999/JEIT161084. TRUNK G V and WILSON J. Association of DF bearing measurements with radar tracks[J]. IEEE Transactions on Aerospace & Electronic Systems, 1987, 23(4): 438–447. doi: 10.1109/TAES.1987.310877 WANG Guohong, HE You, GAO Zhiyong, et al. Improved association of ESM measurements with radar tracks[C]. IET Radar Systems Conference, Edinburgh, UK, 1997: 648–652. doi: 10.1049/cp:19971755. WANG Guohong, MAO Shiyi, HE You, et al. Triple-threshold radar-to-ESM correlation algorithm when each radar track is specified by different number of measurements[J]. IET Radar, Sonar and Navigation, 2000, 147(4): 177–181. doi: 10.1049/ip-rsn:20000094 CHEN Huimin and BAR-SHALOM Y. Track association and fusion with heterogeneous local trackers[C]. IEEE Conference on Decision & Control, New Orleans, USA, 2007: 2675–2680. doi: 10.1109/CDC.2007.4434638. WANG Guohong, ZHANG Xiangyu, and TAN Shuncheng. Effect of biased estimation on radar-to-ESM track association[J]. Journey of System Engineering and Electronic Techniques, 2012, 23(2): 188–194. doi: 10.1109/JSEE.2012.00024 SCALA B F L and FARINA A. Choosing a track association method[J]. Information Fusion, 2002, 3(2): 119–122. doi: 10.1016/S1566-2535(02)00050-7 BENAMEUR K. Radar ESM track to track association[R]. Ottawa: Defence Research Establishment Ottawa, 2001. ZHOU Yifeng, LI Winston, and LEUNG H. Maximum likelihood based ESM/radar track association algorithm in a new modified polar coordinate[R]. Ottawa: Defence Research and Development Canada, 2004. 張翔宇, 王國(guó)宏, 王娜, 等. 系統(tǒng)誤差下異地配置的雷達(dá)和電子支援測(cè)量航跡關(guān)聯(lián)[J]. 電光與控制, 2012, 19(3): 30–34.ZHANG Xiangyu, WANG Guohong, WANG Na, et al. Track association of radar and ESM with systematic at different sites[J]. Electronics Optics &Control, 2012, 19(3): 30–34. OFFER C R. Performance of bearing-only ESM-radar tracking association[C]. IET Data Fusion & Target Tracking Conference, London, UK, 2012: 1–6. doi: 10.1049/cp.2012.0409. 關(guān)欣, 彭彬彬, 衣曉. 基于區(qū)間重合度的雷達(dá)與ESM航跡關(guān)聯(lián)算法[J]. 雷達(dá)科學(xué)與技術(shù), 2017, 15(1): 61–67. doi: 10.3969/j.issn.1672-2337.2017.01.011GUAN Xin, PENG Binbin, and YI Xiao. Track association algorithm of radar and ESM based on the interval overlap ratio[J]. Radar Science and Technology, 2017, 15(1): 61–67. doi: 10.3969/j.issn.1672-2337.2017.01.011 關(guān)欣, 彭彬彬, 衣曉. 修正極坐標(biāo)系下雷達(dá)與ESM航跡對(duì)準(zhǔn)關(guān)聯(lián)[J]. 航空學(xué)報(bào), 2017, 38(5): 221–232. doi: 10.7527/S1000-6893.2016.0287GUAN Xin, PENG Binbin, and YI Xiao. Track alignment-association of radar and ESM in MPC[J]. Acta Aeronautics et Astronautics Sinica, 2017, 38(5): 221–232. doi: 10.7527/S1000-6893.2016.0287 何友, 修建娟, 張晶煒, 等. 雷達(dá)數(shù)據(jù)處理及應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2009: 220–223.HE You, XIU Jianjuan, ZHANG Jingwei, et al. Radar Data Processing with Applications[M]. Beijing: Publishing House of Electronics Industry, 2009: 220–223. ZHU Hongyan, WANG Wei, and WANG Chen. Robust track-to-track association in the presence of sensor biases and missed detections[J]. Information Fusion, 2016, 27: 33–40. doi: 10.1016/j.inffus.2015.05.002 -