多約束稀布矩形平面陣列天線的方向圖綜合
doi: 10.11999/JEIT180262 cstr: 32379.14.JEIT180262
-
1.
火箭軍工程大學作戰(zhàn)保障學院 ??西安 ??710025
-
2.
火箭軍工程大學核工程學院 ??西安 ??710025
Synthesis of Multi-constrained Sparse Rectangular Arrays
-
1.
School of Military Operation Support, Rocket Force University of Engineering, Xi’an 710025, China
-
2.
School of Nuclear Engineering, Rocket Force University of Engineering, Xi’an 710025, China
-
摘要:
針對多約束稀布矩形陣列天線的優(yōu)化設(shè)計問題,該文提出一種新的矩陣映射(NMM)方法。首先,綜合考慮陣元的可分布范圍與可分布數(shù)量,重新定義陣元坐標矩陣的維數(shù)以提高陣元分布的自由度。其次,當坐標矩陣定義的陣元數(shù)量大于實際陣元數(shù)量時,建立選擇矩陣以確定各陣元的取舍。再次,針對現(xiàn)有矩陣映射方法無法完全避免不可行解的問題,構(gòu)建了一種NMM方法,通過兩種不同的矩陣映射函數(shù)將多約束優(yōu)化問題轉(zhuǎn)換為無約束優(yōu)化問題。最后進行仿真對比實驗,實驗結(jié)果證明了算法的有效性。
Abstract:A Novel Matrix Mapping (NMM) method is proposed for the synthesis of sparse rectangular arrays with multiple constraints. Firstly, the sizes of element coordinate matrices are resized to improve the Degree Of Freedom (DOF) of elements by taking account of both placeable number and distributable range of elements. Then, a selection matrix is established to determine which elements should be turned off when the coordinate matrices should be thinned. By establishing two different mapping functions, a NMM method is presented to overcome the drawbacks of existing methods in terms of flexibility and effectiveness. Finally, comparison experiments are conducted to verify the effectiveness of the proposed method. The numerical validation points out that the proposed method outperforms the existing methods in the design of sparse rectangular arrays.
-
Key words:
- Antenna arrays /
- Sparse planar arrays /
- Constrained optimization /
- Sidelobe level
-
表 1 實驗1仿真結(jié)果對比(dB)
實驗類型 方法 最優(yōu)值 最差值 均值 方差 A NMM –61.2178 –52.3630 –57.8363 4.0813 MMM –53.5222 –50.4478 –51.9317 0.4940 B NMM –22.7591 –20.4355 –21.4060 0.1993 MMM –19.1338 –17.9751 –18.5972 0.0875 下載: 導出CSV
表 2 算法運算效率對比
實驗1 方法 平均運行時間(s) 平均內(nèi)存峰值使用量(kB) 平均適應值(dB) 可行解占比(%) A MMM算法 247.614 620 –51.9317 44 本文方法 283.704 620 –57.8363 100 B MMM算法 20472.744 904 –18.5972 60 本文方法 25823.421 984 –21.4060 100 下載: 導出CSV
表 3 實驗2仿真結(jié)果對比(dB)
實驗類型 方法 最優(yōu)值 最差值 均值 方差 A NMM –60.2701 –50.6686 –56.0144 4.7592 B NMM –22.0422 –20.1613 –20.9181 0.2303 下載: 導出CSV
-
DARVISH A and EBRAHIMZADEH A. Improved fruit-fly optimization algorithm and its applications in antenna arrays synthesis[J]. IEEE Transactions on Antennas & Propagation, 2018, 66(4): 1756–1766. doi: 10.1109/TAP.2018.2800695 ZHANG Xuejing, HE Zishu, LIAO Bin, et al. Pattern synthesis for arbitrary arrays via weight vector orthogonal decomposition[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1286–1299. doi: 10.1109/TSP.2017.2787143 ZHANG Xuejing, HE Zishu, LIAO Bin, et al. Pattern synthesis with multi-point accurate array response control[J]. IEEE Transactions on Antennas & Propagation, 2017, 65(8): 4075–4088. doi: 10.1109/TAP.2017.2718582 LI Xun, DUAN Baoyan, ZHOU Jinzhu, et al. Planar array synthesis for optimal microwave power transmission with multiple constraints[J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16: 70–73. doi: 10.1109/LAWP.2016.2555980 LEEPER D. Isophoric arrays—Massively thinned phased arrays with well-controlled sidelobes[J]. IEEE Transactions on Antennas & Propagation, 1999, 47(12): 1825–1835. doi: 10.1109/8.817659 KEIZER W. Synthesis of thinned planar circular and square arrays using density tapering[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(4): 1555–1563. doi: 10.1109/TAP.2013.2267194 李龍軍, 王布宏, 夏春和. 基于改進迭代FFT算法的均勻線陣交錯稀疏布陣方法[J]. 電子與信息學報, 2016, 38(4): 970–977. doi: 10.11999/JEIT150749LI Longjun, WANG Buhong, and XIA Chunhe. Interleaved thinned linear arrays based on modified iterative FFT technique[J]. Journal of Electronics &Information Technology, 2016, 38(4): 970–977. doi: 10.11999/JEIT150749 ZHANG Li, JIAO Yongchang, WENG Zibin, et al. Design of planar thinned arrays using a Boolean differential evolution algorithm[J]. IET Microwaves, Antennas & Propagation, 2010, 4(12): 2172–2178. doi: 10.1049/iet-map.2009.0630 DONELLI M, MARTINI A, and MASSA A. A hybrid approach based on PSO and Hadamard difference sets for the synthesis of square thinned arrays[J]. IEEE Transactions on Antennas & Propagation, 2009, 57(8): 2491–2495. doi: 10.1109/TAP.2009.2024570 YAN Fei, YANG Peng, YANG Feng, et al. Synthesis of planar sparse arrays by perturbed compressive sampling framework[J]. IET Microwaves Antennas & Propagation, 2016, 10(11): 1146–1153. doi: 10.1049/iet-map.2015.0775 VIANI F, OLIVERI G, and MASSA A. Compressive sensing pattern matching techniques for synthesizing planar sparse arrays[J]. IEEE Transactions on Antennas & Propagation, 2013, 61(9): 4577–4587. doi: 10.1109/TAP.2013.2267195 于波, 陳客松, 朱盼, 等. 稀布圓陣的降維優(yōu)化方法[J]. 電子與信息學報, 2014, 36(2): 476–481. doi: 10.3724/SP.J.1146.2013.00526YU Bo, CHEN Kesong, Zhu Pan, et al. An optimum method of sparse concentric rings array based on dimensionality reduction[J]. Journal of Electronics &Information Technology, 2014, 36(2): 476–481. doi: 10.3724/SP.J.1146.2013.00526 CHEN Kesong, YUN Xiaohua, HE Zishu, et al. Synthesis of sparse planar arrays using modified real genetic algorithm[J]. IEEE Transactions on Antennas & Propagation, 2007, 55(4): 1067–1073. doi: 10.1109/TAP.2007.893375 LIU Heng, ZHAO Hongwei, LI Weimei, et al. Synthesis of sparse planar arrays using matrix mapping and differential evolution[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 15: 1905–1908. doi: 10.1109/LAWP.2016.2542882 LIN Zhiqiang, JIA Weimin, YAO Minli, et al. Synthesis of sparse linear arrays using vector mapping and simultaneous perturbation stochastic approximation[J]. IEEE Antennas & Wireless Propagation Letters, 2012, 11: 220–223. doi: 10.1109/LAWP.2012.2188266 賈維敏, 林志強, 姚敏立, 等. 一種多約束稀布線陣的天線綜合方法[J]. 電子學報, 2013, 41(5): 926–930. doi: 10.3969/j.issn.0372-2112.2013.05.015JIA Weimin, LIN Zhiqiang, YAO Minli, et al. A synthesis technique for linear sparse arrays with multiple constraints[J]. Acta Electronica Sinica, 2013, 41(5): 926–930. doi: 10.3969/j.issn.0372-2112.2013.05.015 DAI Dingcheng, YAO Minli, MA Hongguang, et al. An effective approach for the synthesis of uniformly excited large linear sparse array[J]. IEEE Antennas & Wireless Propagation Letters, 2018, 17(3): 377–380. doi: 10.1109/LAWP.2018.2790907 ZHANG Fenggan, JIA Weimin, and YAO Minli. Linear aperiodic array synthesis using differential evolution algorithm[J]. IEEE Antennas & Wireless Propagation Letters, 2013, 12(9): 797–800. doi: 10.1109/LAWP.2013.2270930 -