具有超寬帶RCS減縮特性的天線設(shè)計(jì)
doi: 10.11999/JEIT180254 cstr: 32379.14.JEIT180254
-
空軍工程大學(xué)信息與導(dǎo)航學(xué)院 ??西安 ??710077
Metasurface Antenna Design with Ultra-wideband RCS Reduction
-
Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
-
摘要:
該文設(shè)計(jì)了兩種人工磁導(dǎo)體(AMC)單元,在8~20 GHz的超寬頻帶內(nèi),兩種AMC結(jié)構(gòu)能夠?qū)崿F(xiàn)180°±37° 的反射相位差,將這兩種單元組成棋盤結(jié)構(gòu)時(shí),能夠?qū)崿F(xiàn)入射電磁波的散射場(chǎng)相消,從而在超寬的頻帶內(nèi)實(shí)現(xiàn)棋盤表面法向雷達(dá)散射截面(RCS)的顯著減縮。同時(shí),利用超表面天線的概念,設(shè)計(jì)饋電網(wǎng)絡(luò),將設(shè)計(jì)的AMC結(jié)構(gòu)用做天線,仿真發(fā)現(xiàn)在9.08~10.30 GHz的范圍內(nèi),天線的S11小于–10 dB,可以實(shí)現(xiàn)天線的有效輻射。實(shí)測(cè)結(jié)果和仿真吻合較好,因此該文的棋盤結(jié)構(gòu)可以實(shí)現(xiàn)具有RCS減縮特性的天線設(shè)計(jì)。
-
關(guān)鍵詞:
- 天線 /
- 棋盤結(jié)構(gòu) /
- RCS減縮
Abstract:In this paper, two novel Artificial Magnetic Conductor (AMC) structures, based on circular loop patch and substrate, are designed to realize 180° reflection phase difference in a wide frequency band. These two AMCs’ reflection phase property is applied to redirecting the scattering fields of a radar target to reduce its Radar Cross Section (RCS). This method of RCS reduction can be realized by covering with a chessboard surface composed of two proposed AMC structures, so the RCS reduction in a wide frequency band can be achieved as well. Compared with the same-sized metallic surface, this proposed chessboard surface can reduce RCS drastically from 8 to 20 GHz under normally incident waves, and the RCS also can be reduced under obliquely incident waves. Meanwhile, this surface also can be used as antenna. By precisely designing feed network, the metasurface antenna can be designed. This antenna also has a low profile. The simulated impedance matching frequency band is from 9.08 to 10.30 GHz. Excellent agreement is obtained between simulation and measurement for metasurface antenna and chessboard surface. Such method gives a method for integrated design of antenna and metasurface, so the RCS reduction can be achieved, at the same time the radiation properties can be maintained.
-
Key words:
- Antenna /
- Chessboard surface /
- RCS reduction
-
TRETYAKOV S A. Metasurfaces for general transformations of electromagnetic fields[J]. Philosophical Transactions A, 2017, 373(2049): 1–8. doi: 10.1098/rsta.2014.0362 GLYBOVSKI S B, TRETYAKOV S A, BWLOV P A, et al. Metasurfaces: From microwaves to visible[J]. Physics Reports, 2016, 634: 1–72. doi: 10.1016/j.physrep.2016.04.004 李文惠, 張介秋, 屈紹波, 等. 基于極化旋轉(zhuǎn)超表面的圓極化天線設(shè)計(jì)[J]. 物理學(xué)報(bào), 2016, 65(2): 024101. doi: 10.7498/aps.65.024101LI Wenhui, ZHANG Jieqiu, QU Shaobo, et al. A circular polarization antenna designed based on the polarization conversion metasurface[J]. Acta Physica Sinica, 2016, 65(2): 024101. doi: 10.7498/aps.65.024101 EPSTEIN A and ELEFTHERIADES G V. Huygens’ metasurfaces via the equivalence principle: Design and applications[J]. Journal of the Optical Society of America B, 2016, 33(2): A31–A42. doi: 10.1364/JOSAB.33.000A31 ZHENG Yuejun, ZHOU Yulong, GAO Jun, et al. Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression[J]. Scientific Reports, 2017, 7: 16137. doi: 10.1038/s41598-017-16105-x ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband low-RCS metasurface and its application on antenna[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(7): 2954–2963. doi: 10.1109/TAP.2016.2562665 CHAURASIYA D, GHOSH S, BHATTACHARYYA S, et al. Compact multi-band polarisation-insensitive metamaterial absorber[J]. IET Microwaves, Antennas and Propagation, 2016, 10(1): 94–101. doi: 10.1049/iet-map.2015.0220 LIU Shuo and CUI Tiejun. Flexible controls of scattering clouds using coding metasurfaces[J]. Scientific Reports, 2016, 6: 37545. doi: 10.1038/srep37545 CHEN Wengang, BALANIS C A, and BIRTCHER C R. Checkerboard EBG surfaces for wideband radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(6): 2636–2645. doi: 10.1109/TAP.2015.2414440 PAQUAY M, IRIARTE J C, EDERRA I, et al. Thin AMC structure for radar cross-section reduction[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3630–3638. doi: 10.1109/TAP.2007.910306 CHEN Wengang, BALANIS C A, and BIRTCHER C R. Dual wide-band checkerboard surfaces for radar cross section reduction[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(6): 4133–4138. doi: 10.1109/TAP.2016.2583505 MIGHANI M and DADASHZADEH G. Broadband RCS reduction using a novel double layer chessboard AMC surface[J]. Electronic Letters, 2016, 52(14): 1253–1255. doi: 10.1049/el.2016.1214 LIU Ying, LI Kun, JIA Yongtao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326–331. doi: 10.1109/TAP.2015.2497352 ZHAO Yi, CAO Xiangyu, GAO Jun, et al. Broadband difusion metasurface based on a single anisotropic element and optimized by the simulated annealing algorithm[J]. Scientific Reports, 2016, 6: 23896. doi: 10.1038/srep23896 ESMAELI S H and SEDIGHY S H. Wideband radar cross-section reduction by AMC[J]. Electronic Letters, 2016, 52(1): 70–71. doi: 10.1049/el.2015.3515 CUI Tiejn, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Applications, 2014, 3: e218. doi: 10.1038/lsa.2014.99 LIU Shuo and CUI Tiejun. Flexible controls of terahertz waves using coding and programmable metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 4700312. doi: 10.1109/JSTQE.2016.2599273 LIU Shuo, CUI Tiejun, ZHANG Lei, et al. Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams[J]. Advanced Science, 2016, 3: 1600156. doi: 10.1002/advs.201600156 GAO Lihua, CHENG Qiang, YANG Jing, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science and Applications, 2015, 4: e324. doi: 10.1038/lsa.2015.97 張磊, 劉碩, 崔鐵軍. 電磁編碼超材料的理論與應(yīng)用[J]. 中國(guó)光學(xué), 2017, 10(1): 1–12. doi: 10.3788/CO.20171001ZHANG Lei, LIU Shuo, and CUI Tiejun. Theory and application of coding metamaterials[J]. Chinese Optics, 2017, 10(1): 1–12. doi: 10.3788/CO.20171001 ZANG Lei, WAN Xiang, LIU Shuo, et al. Realization of low scattering for a high-gain fabry-perot antenna using coding metasurface[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(7): 3374–3383. doi: 10.1109/TAP.2017.2700874 LI Kun, LIU Ying, JIA Yongtao, et al. A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(8): 4288–4292. doi: 10.1109/TAP.2017.2710231 SIMONE G, FILIPPO C, and AGOSTINO M. Wideband radar cross section reduction of slot antennas arrays[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(1): 163–173. doi: 10.1109/TAP.2013.2287888 LIU Ying, HAO Yuwen, LI Kun, et al. Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 80–83. doi: 10.1109/LAWP.2015.2430363 BADAWE M E, ALMONEEF T S, and RAMAHI O M. A true metasurface antenna[J]. Scientific Reports, 2015, 6: 19268. doi: 10.1038/srep19268 -