基于FPGA的快速差頻測量系統(tǒng)設計
doi: 10.11999/JEIT180243 cstr: 32379.14.JEIT180243
-
北京科技大學自動化學院 ??北京 ??100083
Design of Fast Differential Frequency Measurement System Based on FPGA
-
School of Automation, University of Science and Technology Beijing, Beijing 100083, China
-
摘要:
針對電子測量中如何對基頻較高而頻率變化值較小的動態(tài)信號進行高精度頻率測量的問題,引入了差頻測量的方法。該文提出一種新型的動態(tài)可調的多級差頻電路結構,設計了基于FPGA的快速差頻測量系統(tǒng),通過在FPGA上設計快速傅里葉變換(FFT)算法來實現(xiàn)系統(tǒng)的數(shù)據處理功能。仿真結果表明,在滿足差頻條件的基礎上,合理設計多級差頻電路的結構能夠實現(xiàn)高精度頻率測量,在進行信號頻譜分析時能得到較為準確的結果。實驗驗證了該測量系統(tǒng)能夠實現(xiàn)快速FFT運算,相比于MATLAB軟件平臺,在數(shù)據處理效率上有明顯的優(yōu)勢;同時在性能指標滿足數(shù)據采集要求的前提下,系統(tǒng)可動態(tài)調整FFT模型的結構來適應不同規(guī)模點數(shù)FFT運算的需求。
Abstract:For the problem of high precision frequency measurement of dynamic signals with high fundamental frequency and small frequency change value in electronic measurement, a method of differential frequency measurement is introduced. A novel dynamic adjustable multi-stage frequency-difference circuit structure is proposed. The fast differential frequency measurement system based on FPGA is used to design the Fast Fourier Transform (FFT) algorithm on the FPGA to realize the data processing function of the system. The simulation and experimental results show that the structure of the multi-stage differential frequency circuit can be designed with high precision frequency, and the result can be obtained when the spectrum analysis is carried out. The system can realize the fast FFT operation. Compared with the MATLAB software platform, the system has obvious advantages in the efficiency of data processing. The structure of the FFT model can be dynamically adjusted to meet the requirements of FFT operation of different scale points, and the system performance index can meet the requirements of data acquisition system.
-
Key words:
- Differential frequency measurement /
- FPGA /
- FFT
-
表 1 差頻電路實驗測量數(shù)據
fin=35.00005 kHz 理論頻差(kHz) 實測頻差(kHz) 絕對誤差(Hz) 相對誤差(%) fck/fin fck (kHz) 0.660011 23.100414 11.899636 11.200800 698.836 5.872751 0.663334 23.216715 11.783335 11.433400 349.935 2.969745 0.666668 23.333414 11.666636 11.666700 0.064 0.000549 0.670002 23.450113 11.549937 11.549900 0.037 0.000320 0.673337 23.566816 11.433234 11.433200 0.034 0.000297 0.733337 25.666827 9.333223 9.333200 0.023 0.000246 0.800003 28.000136 6.999914 6.999600 0.314 0.004486 0.866672 30.333548 4.666502 4.666500 0.002 0.000043 0.933337 32.666858 2.333192 2.333200 0.008 0.000343 0.980003 34.300166 0.699884 0.699890 0.006 0.000857 0.990003 34.650168 0.349882 0.349894 0.012 0.003430 1.000003 35.000172 0.000122 0.000132 0.010 8.196721 1.020004 35.700174 0.700124 0.700109 0.015 0.002142 1.200004 42.000206 7.000156 7.000034 0.122 0.001743 1.400005 49.000243 14.000193 14.000069 0.124 0.000886 1.600006 56.000277 21.000227 21.000000 0.227 0.001081 1.800007 63.000318 28.000268 28.000140 0.128 0.000457 1.980007 69.300355 34.300305 34.300280 0.025 0.000073 1.990099 69.653570 34.653520 34.530000 123.520 0.356443 2.000010 70.000463 35.000413 34.640000 360.410 1.029739 2.010011 70.350470 35.350420 34.880000 470.420 1.330734 2.020011 70.700478 35.700428 35.000000 700.428 1.961960 下載: 導出CSV
表 2 差頻測量系統(tǒng)和MATLAB數(shù)據處理效率
點數(shù) 采樣頻率/待測頻率 分辨率(Hz) 相對誤差(%) 時間消耗 差頻測量系統(tǒng)t1×10–6 (s) MATALB t2 (s) t2/t1 64 1.5 8.44 65.12 1.7911 0.0728 40645.41 2.5 14.06 2.77 1.7911 0.0729 40701.25 3.5 19.69 4.59 1.7912 0.0729 40698.97 128 1.5 4.22 71.11 3.1821 0.0824 25894.85 2.5 7.03 1.44 3.1823 0.0825 25924.65 3.5 9.84 2.51 3.1921 0.0824 25813.73 256 1.5 2.11 68.87 5.4661 0.0927 16959.08 2.5 3.52 1.24 5.4654 0.0928 16979.54 3.5 4.92 1.35 5.4657 0.0928 16978.61 512 1.5 1.05 71.12 10.9351 0.1084 9913.03 2.5 1.76 1.02 10.9332 0.1083 9905.61 3.5 2.46 1.12 10.9411 0.1084 9907.60 下載: 導出CSV
表 4 差頻測量系統(tǒng)測量誤差及分辨率
ft (kHz) 閘門個數(shù) 計數(shù)器計數(shù)值 fck–fin (Hz) fin (Hz) 相對誤差(×10–6) 分辨率(×10–6) 170.00039 2000 7999371 2000.26227 170000.7777 2.2808 5.81575 170.20039 1800 7999165 1800.28240 170200.7576 2.1598 5.81619 170.40039 1600 7999747 1600.13460 170400.9054 3.0246 5.81629 170.60038 1400 7998135 1400.39997 170600.6418 1.5345 5.81673 170.80039 1200 7998931 1200.22338 170800.8166 2.4978 5.81521 171.00039 1000 7987647 1001.59909 170999.4409 5.5502 5.81764 下載: 導出CSV
-
李存龍, 陳偉民, 章鵬, 等. 采用差頻技術的正弦調制型微波測距系統(tǒng)研究[J]. 電子測量與儀器學報, 2014, 28(1): 17–21. doi: 10.13382/j.jemi.2014.01.003LI Cunlong, CHEN Weimin, Zhang Peng, et al. Research on sinusoidal modulation microwave ranging system based on heterodyne technique[J]. Journal of Electronic Measurement and Instrument, 2014, 28(1): 17–21. doi: 10.13382/j.jemi.2014.01.003 馮冠平. 諧振傳感理論及器件[M]. 北京: 清華大學出版社, 2008: 35–40.FENG Guanping. Resonant Sensor Theory and Device[M]. Beijing: Tsinghua University Press, 2008: 35–40. 樊養(yǎng)余, 李利品, 黨瑞榮. 基于隨機共振的任意大頻率微弱信號檢測方法研究[J]. 儀器儀表學報, 2013, 34(3): 566–572. doi: 10.3969/j.issn.0254-3087.2013.03.013FAN Yangyu, LI Lipin, and Dang Ruirong. Study on high frequency weak signal detection method based on stochastic resonance[J]. Chinese Journal of Scientific Instrument, 2013, 34(3): 566–572. doi: 10.3969/j.issn.0254-3087.2013.03.013 王盟盟, 董瑞芳, 項曉, 等. 基于外差檢測原理的絕對測距性能理論研究[J]. 儀器儀表學報, 2016, 37(8): 1861–1868. doi: 10.3969/j.issn.0254-3087.2016.08.018WANG Mengmeng, DONG Ruifang, XIANG Xiao, et al. Theoretical research for absolute distance measurement based on heterodyne detection principle[J]. Chinese Journal of Scientific Instrument, 2016, 37(8): 1861–1868. doi: 10.3969/j.issn.0254-3087.2016.08.018 劉婉茹, 葉建芳, 孫一萍. 基于Multisim乘法器混頻電路的仿真研究[J]. 微型電腦應用, 2016, 32(10): 48–50. doi: 10.3969/j.issn.1007-757X.2016.10.014LIU Wanru, YE Jianfang, and SUN Yiping. Simulation and study of multiplier mixer circuit based on multism[J]. Microcomputer Applications, 2016, 32(10): 48–50. doi: 10.3969/j.issn.1007-757X.2016.10.014 LIN Ningning, MENG Xiaofeng, and NIE Jing. Dew point calibration system using a quartz crystal sensor with a differential frequency method[J]. Sensors, 2016, 16(11): 1944–1948. doi: 10.3390/s16111944 程坤, 黃慶安, 秦明, 等. 一種簡單實用的差頻方法原理研究及應用[J]. 電子器件, 2006, 29(2): 473–475. doi: 10.3969/j.issn.1005-9490.2006.02.046CHENG Kun, HUANG Qingan, QIN Ming, et al. Simple method of improving the differential frequency using D flip-flop[J]. Chinese Journal of Electron Devices, 2006, 29(2): 473–475. doi: 10.3969/j.issn.1005-9490.2006.02.046 徐洋洋. 基于FPGA的多通道大容量FIFO設計[J]. 電子測量技術, 2017, 40(8): 193–197. doi: 10.19651/j.cnki.emt.2017.08.043XU Yangyang. Design of multi-channel FIFO with mass storage facility based on FPGA[J]. Electronic Measurement Technology, 2017, 40(8): 193–197. doi: 10.19651/j.cnki.emt.2017.08.043 梁晨, 趙邦信. 基于FPGA和DDR3 SDRAM的大規(guī)模查找表設計與實現(xiàn)[J]. 電子器件, 2017, 40(4): 849–855. doi: 10.3969/j.issn.1005-9490.2017.04.014LIANG Chen and ZHAO Bangxin. Design of large-scale look-up table based on FPGA and DDR3 SDRAM[J]. Chinese Journal of Electron Devices, 2017, 40(4): 849–855. doi: 10.3969/j.issn.1005-9490.2017.04.014 梁華國, 孫紅云, 孫駿, 等. 一種基于FPGA的微處理器軟錯誤敏感性分析方法[J]. 電子與信息學報, 2017, 39(1): 245–249. doi: 10.11999/JEIT.160225LIANG Huaguo, SUN Hongyun, SUN Jun, et al. FPGA-based soft error sensitivity analysis method for microprocessor[J]. Journal of Electronics &Information Technology, 2017, 39(1): 245–249. doi: 10.11999/JEIT.160225 WANG Jiawei, YU Le, and YANG Haigang. FPGA based multi-channel variable-length FFT implementation[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(3): 469–474. doi: 10.11805/TKYDA201703.0469 陳杰男, 費超, 袁建生, 等. 超高速全并行快速傅里葉變換器[J]. 電子與信息學報, 2016, 38(9): 2410–2414. doi: 10.11999/JEIT160036CHEN Jienan, FEI Chao, YUAN Jiansheng, et al. An ultra-high-speed fully-parallel fast fourier transform design[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2410–2414. doi: 10.11999/JEIT160036 CHEN Jiyang, YUAN Wulei, YUAN Xipeng, et al. Configurable floating-point FFT accelerator on FPGA based multiple-rotation CORDIC[J]. Chinese Journal of Electronics, 2016, 25(6): 1063–1070. doi: 10.1049/cje.2016.08.002 黃志洪, 李威, 楊立群, 等. 一種基于與非錐簇架構 FPGA 輸入交叉互連設計優(yōu)化方法[J]. 電子與信息學報, 2016, 38(9): 2397–2404. doi: 10.11999/JEIT151216HUANG Zhihong, LI Wei, YANG Liqun, et al. An input crossbar optimization method for and-inveter cone based FPGA[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2397–2404. doi: 10.11999/JEIT151216 蘇斌, 劉暢, 潘志剛. 基于FPGA的高速浮點FFT/IFFT處理器設計與實現(xiàn)[J]. 中國科學院大學學報, 2015, 32(2): 259–263. doi: 10.7523/j.issn.2095-6134.2015.02.016SU Bin, LIU Chang, and PAN Zhigang. Design and implementation on high-speed floating points FFT processor based on FPGA[J]. Journal of University of Chinese Academy of Sciences, 2015, 32(2): 259–263. doi: 10.7523/j.issn.2095-6134.2015.02.016 施佺, 韓賽飛, 黃新明, 等. 面向全同態(tài)加密的有限域FFT算法FPGA設計[J]. 電子與信息學報, 2018, 40(1): 57–62. doi: 10.11999/JEIT170312SHI Quan, HAN Saifei, HUANG Xinming, et al. Design of finite field FFT for fully homomorphic encryption based on FPGA[J]. Journal of Electronics &Information Technology, 2018, 40(1): 57–62. doi: 10.11999/JEIT170312 -